

Ta-Nb-Sn-Ti-REE - Minastyc Property

Mining Title LFH-14431X Vereda Guaripa, Puerto Carreño - Vichada Dept., Colombia -

43-101 Technical Evaluation Report

Trenches in oxidized gravels of Area 50. Drone view to the $\ensuremath{\mathsf{SW}}$

Prepared for AUXICO Resources Canada Inc. by

André Ciesielski, DSc., P. Geo.& Joel Scodnick, B.Sc., P. Geo., QP Effective Date: March 28, 2022 Amended Date: December 17, 2023 Date and Signature

Ta-Nb-Sn-Ti-REE - Minastyc Property Mining Title LFH-14431X Vereda Guaripa, Puerto Carreño Vichada Dept., Colombia 43-101 Technical Evaluation Report

This report has been prepared and revised by

"Original Signed and sealed on file"

André Ciesielski, DSc., P. Geo and

"Original Signed and sealed on file"

Joel Scodnick, B.Sc., P. Geo., QP

Effective Date

March 28, 2022

Amended Date

December 17, 2023

Certificates of Authors

I André Ciesielski, P.Geo., hereby certify that

1. I am a Canadian citizen, living at 1777 Du Manoir Av., Montreal, H2V 1B7, Qc, Canada;

2. I have a DEA in structural geology and a Doctorate in petrology from Université Pierre & Marie Curie, France.

3. I am a member of Ordre des Géologues du Québec, with licence # 514.

4. I have worked as a professional geologist since diploma, 17 years as a research geoscientist with the Geological Survey of Canada and more than 20 years for various mining exploration companies. I have performed field works and completed studies, documents, assessments and reports on precious and base metals, diamond, rare earths and uranium in various mining properties in eastern Canada, West Africa, Morocco, Mexico, Guyana, Colombia, etc.

5. I have read the definition of "Qualified Person" set out in National Instrument (NI) 43-101 and certify that given my education, affiliation with a professional association and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of NI 43-101.

6. I am co-responsible for all the items of the Technical Report entitled Ta-Nb-Sn-Ti-REE – Minastyc property, Mining Title LFH-14431X, Vereda Guaripa, Puerto Carreno, Vichada Dept., Colombia, 43-101 Technical Evaluation Report with effective date of March 28, 2022.

7. I did not visit the property.

8. I am not aware of any material fact or material change with respect to the subject matter of this Technical Report that would make it misleading.

9. I had no prior involvement with the Minastyc property.

10. I am independent of the issuer (AUXICO Resources Canada Inc.), applying all of the tests in Section 1.5 of National Instrument 43-101.

11. This report may be amended only at the discretion of the authors.

12. I have read National Instrument 43-101 and Form 43-101F1 and the technical Report has been prepared in compliance with that instrument and form.

Montreal, December 17, 2023

"Original Signed and sealed on file"

André Ciesielski, P. Geo. (OGQ # 514)

I, Joel Scodnick, P.Geo., as an author of this Technical Report entitiled "Ta-Nb-Sn-Ti-REE – Minastyc Property, Mining Title LFH-14431X, Vereda Guaripa, Puerto Carreno – Vichada Dept., Colombia- 43-101 Technical Evaluation Report", prepared for AUXICO Resources Canada Inc. and dated March 28, 2022, do hereby certify that:

I am the President and CEO of Sierra Geological Consultants Inc.;

I am a practicing member of the Association of Professional Geoscientists of Ontario (member # 1065). I have worked as a geologist for a total of 42 years since my graduation. My relevant experience for the purpose of this Technical Report is:

Review and report as a consultant on several exploration and mining operations around the world for due diligence, feasibility studies, and resource/reserve estimation;

Chief Geologist at the Velardena Polymetallic Mine in Durango, Mexico. Responsible for commissioning the mine and putting it into production at an initial pre-production rate of 500 tpd;

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined by NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101;

I graduated in 1982 from Concordia University in Montreal, Quebec, Canada with a B.Sc. in Geology;

I graduated in 1978 from Algonquin College in Ottawa, Ontario, Canada with Honors Distinction in Electro-Mechanical Engineering Technology-Drafting;

I conducted exploration activities on the Minastyc Property from August to December, 2021 on various occasions;

I am a co-author of the Technical Report;

I have no prior involvement with the Property that is the subject of the Technical Report;

To the best of my knowledge I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected herein, the omission to disclose which makes the Technical Report misleading. The Technical report contains all scientific information that is required to be discloses to make the Technical Report not misleading in any way;

This report may only be amended at the discretion of the authors of this report;

I have read National Instrument 43-101, and the Technical Report has been prepared in compliance with National Instrument 43-101 and 43-101F1.

Dated in Culiacan, Sinaloa, Mexico, this 17th day of December 2023.

"Original Signed and sealed on file"

Joel Scodnick, B.Sc., P. Geo. (APGO # 1065), QP

Table of Content

							PAGE
Date & Signatures							i
Certificates of Authors							 11
1. Summary							1
2. Introduction							3
3. Reliance on Other Expert	ts						3
4. Property Description & L	locat	ion					
4.1 Location .							4
4.2 Exploration Right	ts						5
4.3 Agreements .							5
4.4 Environment Liab	oility						6
4.5 Surface Rights .							6
5. Accessibility, Climate Inf	rastr	ucture	, Phys	iograpl	hy		
5.1 Accessibility .				•			7
5.2 Climate .							8
5.3 Physiography Flor	ra &	Fauna					8
5.4 Local Resources &	& Inf	rastru	ctures				9
6. History							10
7. Geological Setting & Min	erali	zation					
7.1 Regional Geology							10
7.2 Local & Property	Geo	logy					12
7.3 Property minerali	zatio	n					14
8. Deposit Type							14
9. Exploration							15
9.1 Satellite Imagery	/ Re	mote S	ensin	g			15
9.2 Topography .				•			16
9.3 Geophysics .							16
Seismic Refract	tion						18
IP Lines .							19
9.4 Geology, Samplin	g & .	Analys	es by	АМСО			20
Parguaza Grani	ite						20
Quaternary All	uvial	Depo	sits				22
Sampling & An	alyti	cal Res	sults				26
9.5 Geology, Samplin	g & .	Analys	es by	CanaM	ex		27
Geology of Gra	anite	& All	uvial 1	Deposit	ts		28
Mineralization							32
Sampling .							32
August 2021 an	nalyti	cal Re	sults				35
10. Drilling	-						41

	CanaMe	X 📣					
11. Sample Preparation, Analyses & Sec	curity						41
12. Data Verification							42
13. Mineral Processing and Metallurgica	al Test	ing					43
14. Mineral Resource Estimates	•	•		•			43
23. Adjacent Properties	•	•	•				43
24. Other Relevant Data & Information	l	•			•	•	43
24.1 Critical Minerals .					•	•	43
24.2 World REE 2020 production	1				•	•	45
24.3 Environment Liabilities					•	•	46
24.4 AMCO Report.	•	•	•	•	•	•	51
24.5 Vichada Meteorite Impact	•						53
24.6 Agualinda Property .	•						53
25. Conclusion		•	•	•			55
26. Recommendations & Budget		•	•	•			56
27. References		•	•	•	•	•	58
Appendix I Sample Descriptions		•	•	•	•	•	61
Appendix II Analytical Results		•	•	•	•	•	63
Appendix III Auger Program .		•	•	•	•	•	65
Appendix IV Assay Certificates	•	•	•	•	•	•	67
List of Tables							PAGE
I Property coordinates							4
II Location of pits and trenches							23
III AMCO analytical results .							26
IV AMCO 500 g analytical results							27
V Locations of December 2021 samples	3						33
VI CanaMex August 2021 analytical res	, 111te			•			36
VI Caralier August 2021 analytical ics	uits	•	•	•	•	•	20
viii Geochemistry of area 50 monazites		•	•		•	•	30
VIII Geochemistry of Au, Ag, Pt, Pd sz	imples		•	•	•	•	39
IX Presence of critical metals on Minas	tyc	•	•	•	•	•	44
X World REE 2020 production .		•	•		•	•	45
List of Figures							PAGE
1 Location map							4
2 Location on satellite image .							7
3 Precipitations							8
4 Grassy plains							8
5 Inselberg							8
6 Bio Orinoco satellite image							9
o Rio Officeo satemite mage .	•	•	•				

Cana	Μ	ex	Â
------	---	----	---

7a	Location of section .								•	11
7b	Section of Llanos Orien	ntales							•	11
8	Geology of Guiana Shi	eld								12
9	Local satellite image									13
10	Property topography									16
11	Location of IP & seism	ic sec	tions							17
12	16 P wave seismic section	ions								18
17.	20 IP sections .									19
21	Granite inselberg									20
22	Pegmatite vein .									20
23	Coarse grain granite.									21
24	Stratified ferricrete.									21
25	Granite alteration secti	on							•	21
26	Inselberg section									22
27	Location of AMCO trea	nches	& IP 1	ines						23
28	Deposit section								•	24
29	Deposit section								•	25
30	Deposit section								•	25
31	Deposit section								•	25
32	Deposit section									26
33	Location of 2021 Canal	Mex sa	amples							27
34	Deposit section S00357	753								28
35	Parguaza granite									29
36	Sediment 1 .									29
37	Sediment 2 .									30
38	Lithified sediment 1 in	sedim	ent 2							30
39	Sediment 2 & 1									31
40	Sediment 3 & 4									31
41	Sediment 3 & 4									32
42	Heavy minerals									32
43	2021 sample locations									35
44	Geobotany spectral map	р								41
45	World REE 2020 produ	ction								44
46	Section of channels									49
47	Hydraulic tanks .									50
48	Vichada meteorite impa	ict							•	53
49	Minastyc South location	n	•	•	•	•	•	•	•	54

1. Summary

Following agreements dated September 9th and December 17th 2020, between U.B. Climaco Silvestre and AUXICO Resources Canada Inc. concerning the Minastyc property covering 189 ha., south of Puerto Carreño, Colombia, exploration in Quaternary alluvial deposits took place for Ta, Nb, Zr, Sn and Rare Earth Elements (REE's).

In Colombia, historically, alluvial mining has been carried out mostly for gold and is concentrated in both cordilleras in the western part of the country and is related to the proximity of gold sources. Exploration for alluvial heavy minerals, mainly magnetite and ilmenite, took place offshore in northern Colombia, along the Caribbean Sea. Inland, artisanal alluvial mining and exploration for heavy minerals (Ta, Nb and REE) are limited in the Vichada and Guaiana Departments and further south in the Rio Guaiana watershed and in Brazil and Venezuela border areas.

Exploration on the Minastyc property was carried out in 2020 and 2021 by AMCO Consultores (AMCO) and comprises topographic and photo-mosaic surveys, induced polarization (IP) and seismic refraction sections, pit and trench digging, geology, sampling and geochemical analyses. A satellite imagery analysis was produced by JAPOSAT Satellite Mapping.

Further exploration was carried out in August and December 2021 by Servicios de Mineria CanaMex S.A. de C.V. (CanaMex). Joel Scodnick, one of the authors of the present report is the Qualified Person (QP) for AUXICO. Mapping and geology, sampling and geochemical analyses were carried out in the various existing pits and trenches.

The Minastyc property is located along the west side of Rio Orinoco, 12 km south of Puerto Carreño. It shows a flat relief and comprises Quaternary alluvial deposits made of thin soil, iron-rich horizons, oxidized silt, sand and grit, gravel, clay, and lateritic material. The alluvial deposits are underlain by Proterozoic Parguaza granite, locally showing as inselbergs on which a ferricrete alteration horizon is described. Seismic line surveys show a 3-5 m thick low speed P-wave surficial horizon. Only one IP line shows a 7 m thick high resistive continuous horizon.

Geological mapping of pits and trenches by CanaMex show a 50 cm thick iron and clayrich fine to coarse grain horizon at surface underlain by 2 m of oxidized silt, sand, clay and grit (sediment 3 and 4) followed by a lithic and conglomeratic oxidized sandy horizon showing rounded quartz, altered feldspars and heavy minerals (sediment 1 and 2). At the base, the Parguaza granite is overlain by 1 m or more of saprock and saprolite in which cm size layered iron concretions (ferricrete) are found.

AMCO's samples were taken from vertical channels or from adjacent stockpiles and washed to produce concentrates. XRF analytical results from 500 g concentrates shows Ta-Nb-Sn values above 2%. Given the lack of detailed information the AMCO results are considered only qualitative showing the presence of columbo-tantalite, cassiterite, possibly Ta-rutile and zircon in the heavy mineral concentrates.

Sampling of the various pits and trenches by CanaMex in August 2021 was done in the vicinity of the granite inselbergs, to the southeast and in the center of the property where a bulk sample was taken on two close pits in Area 50. The fine concentrate showed total rare earth oxides (TREO) of 65.57% and the coarser fraction returned 68.25%. Coarse fraction of

another sample at the same location, area 50, returned 60.90% TREO and a pulverized duplicate returned 63.18% TREO.

Other samples were taken on the property along vertical channels and in adjacent stockpiles and washed to produce concentrates. XRF analytical results from fine-grained concentrates show high TiO₂ and ZrO₂ values between 16-30% and 3-26% respectively. Various element concentrations suggest the presence of ilmenite, rutile and possible Tarutile, zircon and / or baddeleyite, cassiterite and limited amounts of native Pt, Au, Pd and Ag. The bulk sample concentrate from Area 50 shows high P₂O₅ and ThO₂ values along with high Ce, Nd, La, Pr and Sm values. The composition is compatible with the presence of REE-rich monazite, columbo-tantalite, cassiterite and iron hydroxides in the concentrates.

The geological description and sampling by CanaMex in December 2021 resulted in a more precise understanding of the Minastyc stratigraphy and shows a concentration of fertile heavy minerals above the granite saprolite in conglomeratic sediment 1 and 2. The distribution of the stratigraphic sections being limited, an auger program for 2022 is proposed to cover the center and eastern parts of the property at 100 x 100 m grid.

In a world favorable context for critical metals and minerals, the exploration of the Minastyc property by AMCO and CanaMex in 2020 and 2021 in Eastern Colombia, shows high Ta, Nb, Zr, Sn, and REE values in heavy mineral concentrates. It suggests potential for at least three alluvial deposits that should be fully evaluated following recommendations in 2022.

Given all the results presented in this report, the authors conclude that the alluvial deposits of the Minastyc Property show anomalous concentrations of Sn, Ti, Ta, Nb and REE, Au and Pt, and that with further detailed work, there is an opportunity of outlining a deposit of economic worth, should enough material, grade, and continuity of the alluvial's be established. Further exploration is required to fully assess the economic potential for Sn, Ti, Ta, Nb and REE, Au and Pt of the alluvial deposits of the Rio Orinoco in Colombia.

Following the analytical results and the stratigraphic works carried out on the Minastyc property in 2020 and 2021, and based on the positive results obtained in these field seasons, it is recommended to engage in a detailed exploration program for 2022-2023. A budget of USD 797,880 is recommended.

An auger program should be undertaken in order to map, sample and study the stratigraphy of the entire property. A 50 or 100 m spaced and staggered row grid should be established. The holes should reach 7 to 8 m or stopped at the water table and carefully sampled every meter or according to the various sedimentary units.

2. Introduction

The following provides an NI 43-101 compliant report of the REE Ta and Nb heavy minerals of the Minastyc property, Vichada department, Colombia. Major interest in the project was acquired by AUXICO Resources Canada Inc. following *purchase agreements* dated September 9th and December 17, 2020, with Climaco Silvestre Unda Barrios, owner of the property.

Recent exploration on the property was carried out by AMCO Consultores and Servicios de Mineria CanaMex S.A. de C.V. The present Technical Report describes historic works, mineralization types and metal potential of the property. Information has been gathered from a number of government maps, independent scientific papers and technical reports, unpublished internal studies, maps and various geological sources. The author, Joel Scodnick, P. Geo., qualified person (QP) for AUXICO visited the Minastyc property on 3 occasions from August to December 2021.

AUXICO Resources may use this Technical Report to satisfy disclosure and filing requirements of Canadian securities regulators. This report has an effective date of March 28, 2022.

Units of measurement used in this report conform to the SI (metric) system. REE, Ta and Nb values are reported in percent (%). Some metals may be reported in ppm or g/t and as ppb. All currencies are US dollars (US \$) unless otherwise noted.

LIST OF ABBREVIATIONS

m, km	meter, kilometer
mm, cm	millimeter, centimeter
ha	hectare
g,g/t	grams, gram/ton (equivalent to ppm)
GPS	geographical positioning system
ppm, ppb	parts per million, parts per billion
a.s.l.	above sea level
°C	degree Celsius
REE's	Rare Earth Elements
EM	Electro-magnetic
IP	Induced Polarization
UTM	Universal Transverse Mercator (projection)
WGS84	World Geodetic System (datum)

3. Reliance on Other Experts

The authors did not rely on any other experts to carry out the present technical report.

4. Property Description and Location

4.1 Location

The Minastyc property is located in the department of Vichada in eastern Colombia, 870 km by road east of Bogota via Villavicencio and Puerto Carreño at the junction of the Rio Meta and the Rio Orinoco. The property is located 12 km south of Puerto Carreño immediately west of the Rio Orinoco near the Casuarito village and covers 188,74 ha. It is limited by the following zone 19N UTM coordinates, Table I, Figure 1.

Id Х Υ 666893 670509 1 2 667444 670513

Table I : Minastyc property

coordinates.

4 667885 670398 5 667886 670293 6 668217 670290 7 668223 670179 8 668655 670184 9 668665 670079 10 668995 670070 11 668993 669854 12 668881 669854 13 668776 669304 14 668776 669304 15 668776 669300 17 668664 669192 18 668556 669191 19 668523 669301 20 667781 669407 21 667781 669407 22 667781 669407 23 677771 669516 24 667005 669282 25 667702 669732 26 667703 669407 27 667602 669403 30 666657 </th <th>3</th> <th>667445</th> <th>670403</th>	3	667445	670403
Sin Constant Sin Constant 5 667886 670293 6 668217 670290 7 668223 670179 8 668655 670184 9 668665 670079 10 668995 670070 11 668993 669855 12 668881 669637 13 668776 669631 14 668775 669631 15 668776 669304 16 668556 669191 15 668776 669305 17 668553 669301 18 668556 669191 19 668217 669407 20 668217 669407 21 667781 669407 22 667701 669519 23 677077 669628 24 667448 669122 25 667602 669742 28 666672	4	667885	670398
5 667000 670290 6 668217 670290 7 668223 670179 8 668655 670184 9 668665 670079 10 668995 670070 11 668995 669855 12 668881 669637 13 668776 669304 14 668775 669631 15 668776 669304 16 668666 669300 17 668553 669301 18 668553 669301 20 668217 669401 21 667781 669407 22 667781 669407 23 677771 669519 25 667428 669253 26 667005 669628 27 667002 669742 28 666672 669844 30 666557 669850 31 666667<	5	667886	670293
7 668223 670179 8 668655 670184 9 668655 670079 10 668995 670070 11 668993 669855 12 668881 669874 13 668884 669637 14 668775 669304 15 668776 669304 16 668666 669300 17 668664 669301 18 668553 669301 20 668223 669301 21 6687761 669407 22 667781 669407 23 677771 669519 24 667448 669519 25 667002 669628 27 667002 669407 28 666672 669404 30 666557 669844 30 666667 669844 30 666667 669961 31 6666	5 6	668217	670290
Norm Norm 8 668655 670179 9 668655 670079 10 668995 670070 11 668995 670070 11 668993 669855 12 668881 669854 13 668884 669637 14 668775 669631 15 668776 669300 17 668664 669192 18 668553 669301 19 668553 669301 20 667781 669401 21 667781 669411 22 667781 669407 23 677771 669407 24 667428 669628 25 667002 669732 26 667002 669742 28 666672 669844 30 666557 669850 31 666667 669961 33 666667 6699	7	668223	670170
9 668653 670079 10 668995 670070 11 668993 669855 12 668881 669854 13 668884 669637 14 668775 669631 15 668766 669300 16 668666 669300 17 668664 669192 18 668556 669301 19 668553 669301 20 668223 669305 21 6687781 669407 22 667781 669407 23 677771 669516 24 667005 669628 25 667602 669732 26 667005 669407 28 666672 669850 31 666553 669850 31 6666667 669961 33 666667 670182 34 666776 670182 35 666780	, o	669655	670194
9 668665 670079 10 668995 670070 11 668993 669855 12 668881 669854 13 668884 669637 14 668775 669304 15 668776 669304 16 668666 669300 17 668664 669192 18 668556 669301 19 668553 669301 20 668223 669305 21 6687781 669407 23 677711 669516 24 667442 669423 25 667701 669523 26 667005 669628 27 667002 669732 28 666672 669850 31 666553 669951 32 666667 669961 33 666667 670182 34 666776 670182 35 66	0	000033	070104
10 668995 670070 11 668993 669855 12 668881 669854 13 668884 669637 14 668775 669631 15 668776 669304 16 668666 669300 17 668664 669192 18 668556 669191 19 668553 669301 20 668223 669305 21 668217 669407 23 67771 669516 24 667448 669519 25 667005 669628 27 667002 669732 28 666672 669407 30 666553 669850 31 666666 669961 33 666667 670182 34 666776 670182 35 666780 670401 WGS84 UTM z 19N 19N	9	668665	6/00/9
11 668993 669855 12 668881 669854 13 668884 669637 14 668775 669631 15 668776 669304 15 668776 669304 16 668666 669192 17 668664 669192 18 668553 669191 19 668553 669305 20 668223 669305 21 668217 669407 22 667781 669407 23 677771 669516 24 667442 669523 25 667005 669628 27 667002 669732 28 666672 669844 30 666553 669844 30 666657 669951 31 666667 669961 33 666667 670176 34 666776 670182 35 666780 670401 36666780 670401	10	668995	6/00/0
12 668881 669854 13 668884 669637 14 668775 669631 15 668776 669304 15 668776 669304 16 668666 669300 17 668666 669192 18 668556 669191 19 668553 669305 20 668213 669305 21 667781 669407 22 667781 669519 23 677771 669516 24 667005 669628 27 667002 669732 28 666672 669941 30 666557 669844 30 666557 669850 31 666667 669961 33 666667 670176 34 666776 670182 35 666780 670401 WGS84 UTM z 19N 19N 19N	11	668993	669855
13 668884 669637 14 668775 669631 15 668776 669304 15 668776 669300 16 668666 669300 17 668664 669191 18 668553 669301 19 668553 669301 20 668223 669305 21 668217 669411 22 667781 669407 23 677711 669516 24 667448 669519 25 667005 669628 26 667005 669628 27 6667005 669628 28 666672 669844 30 666557 669850 31 666553 669961 33 6666669 670176 34 666776 670182 35 666780 670401 WGS84 UTM z 19N 19N 19N	12	668881	669854
14 668775 669631 15 668776 669304 15 668776 669300 16 668666 669192 17 668664 669192 18 668553 669301 19 668553 669301 20 668223 669305 21 668217 669411 22 667781 669407 23 67771 669519 24 667448 669519 25 667002 669628 26 667002 669742 28 666672 669844 30 666553 669850 31 666553 669951 32 666667 669961 33 666667 670176 34 666776 670182 35 666780 670401 WGS84 UTM z 19N 57401	13	668884	669637
15 668776 669304 16 668666 669300 17 668664 669192 18 668556 669191 19 668553 669301 20 668223 669305 21 668217 669411 22 667781 669407 23 67771 669516 24 667442 669625 25 667002 669732 26 667002 669732 27 666667 669844 30 666553 669850 31 666553 669961 32 6666669 670176 34 666776 670182 35 666780 67039 36 666889 670401	14	668775	669631
16 668666 669300 17 668664 669192 18 668556 669191 19 668553 669301 20 668223 669305 21 668217 669401 22 667781 669407 23 67771 669516 24 667442 669625 26 667005 669628 27 667002 669732 28 666672 669844 30 666553 669850 31 666653 669951 32 666669 670176 33 666669 670176 34 666776 670399 36 666889 670401	15	668776	669304
17 668864 669192 18 668556 669191 19 668553 669301 20 668223 669305 21 668217 669411 22 667781 669407 23 677711 669516 24 667448 669519 25 667005 669628 26 667005 669628 27 6666672 669742 28 666672 669844 30 666553 6699515 31 666653 669951 32 666666 669961 33 666676 670176 34 666776 670182 35 666780 670401 36 666889 670401	16	668666	669300
18 668556 669191 19 668553 669301 20 668223 669305 21 668217 669411 22 667781 669407 23 67771 669516 24 667448 669519 25 667002 669628 26 667002 669742 28 666672 669844 30 666553 669850 31 666653 669961 33 666667 670176 34 666776 670182 35 666780 670399 36 666889 670401	17	668664	669192
19 668553 669301 20 668223 669305 21 668217 669407 22 667781 669407 23 677711 669516 24 667442 669628 25 667005 669628 26 667002 669732 26 666702 669742 27 666667 669844 30 666557 669840 31 666657 669951 32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401	18	668556	669191
20 668223 669305 21 668217 669411 22 667781 669407 23 67771 669516 24 667448 669519 25 66742 669628 26 667005 669628 27 667002 669732 28 666672 669844 30 666557 669850 31 666657 669961 32 666667 670176 34 666776 670182 35 666780 670399 36 666889 670401	19	668553	669301
21 668217 669411 22 667781 669407 23 67771 669516 24 667448 669519 25 667442 669625 26 667002 669732 27 667002 669742 28 666672 669844 30 666557 669850 31 666667 669961 33 666667 670176 34 666776 670182 35 666889 670401 WGS84 UTM z 19N 560000 560000	20	668223	669305
22 667781 669407 23 677771 669516 24 667448 669519 25 667442 669625 26 667002 669732 27 667002 669732 28 666672 669840 30 666557 669850 31 666653 669961 32 666666 670176 34 666776 670182 35 666889 670401 WGS84 UTM z 19N 50000 50000	21	668217	669411
23 677771 669516 24 667448 669519 25 667442 669628 26 667005 669628 27 667002 669732 28 666672 669742 29 666666 669844 30 666557 669850 31 666667 669961 32 666667 670176 34 666776 670182 35 666889 670401 WGS84 UTM z 19N 5000000000000000000000000000000000000	22	667781	669407
24 667448 669519 25 667442 669625 26 667005 669628 27 667002 669732 28 666672 669742 29 666656 669844 30 666557 669951 31 666667 669961 32 666667 669961 34 666776 670182 35 666780 670399 36 666889 670401	23	677771	669516
25 667442 669625 26 667005 669732 27 667002 669732 28 666672 669742 29 666667 669844 30 666557 669850 31 666553 669961 32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401	24	667448	669519
26 667005 669628 27 667002 669732 28 666672 669742 29 666666 669844 30 666557 669850 31 666553 669951 32 666667 669961 33 666667 670176 34 666776 670399 36 666889 670401 WGS84 UTM z 19N T T	25	667442	669625
27 667002 669732 28 666672 669742 29 666666 669844 30 666557 669850 31 666553 669955 32 666667 669961 33 666669 670176 34 666776 670182 35 666889 670401 WGS84 UTM z 19N V	26	667005	669628
28 666672 669742 29 666666 669844 30 666557 669850 31 666553 669955 32 666667 669961 33 666669 670176 34 666776 670182 35 666889 670401 36 666889 670401	27	667002	669732
29 666666 669844 30 666557 669850 31 666553 669955 32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N V	28	666672	669742
30 666557 669850 31 666553 669955 32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N V	29	666666	669844
31 666553 669955 32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N V	30	666557	669850
32 666667 669961 33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N 5000000000000000000000000000000000000	31	666553	669955
33 666669 670176 34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N 219N	32	666667	669961
34 666776 670182 35 666780 670399 36 666889 670401 WGS84 UTM z 19N 219N	33	666669	670176
35 666780 670399 36 666889 670401 WGS84 UTM z 19N	34	666776	670182
36 666889 670401 WGS84 UTM z 19N	35	666780	670399
WGS84 UTM z 19N	36	666889	670401
	WGS84 U	ITM z 19N	·

4.2 Exploration Rights

Promise of contract for the assignment of rights derived

From the request for mining legalization identified with Plate No. LFH-14431X before the National Agency of Mining that is regulated by the following clauses:

Ninth: Object of the contract: The promising assignor agrees to transfer in favor of the promising assignee by way of assignment of all the rights emanating from the mining transfer contract that results from the mining legalization process identified with the Plate No. LFH-14431X that is in the process evaluation at the National Mining Agency, headed by the promisor cedent Mr. Climaco Silvestre Unda Barrios (Climaco) identified with citizenship card no. 18.260.655, understanding that there are still some procedural stages missing in the legalization process that is being carried out at the National Agency for Mining and that through this document Mr. Climaco assigns in advance the future rights emanating from the mining title granted by the Mining Authority in this process of mining legalization, that is, through this document a clear obligation arises and expresses in the head of Mr. Climaco as assignor so that, once he is registered the mining concession contract that arises from the process of evaluation of the request for legalization identified with the plate LFH-14431X and is registered in the National Mining Registry, it will proceed immediately before the ANM with its position, as established by the Article 22, 23 and 24 of Law 685 of 2001, who will initiate the corresponding procedures to carry out the Assignment of Rights that emanate from the mining concession contract.

4.3 Agreements

On December 14, 2020 AUXICO Resources Canada Inc. entered into a Promise of Sale of Property and Possession of Property Denominated as Minastyc with Mr. Climaco, a resident of the municipality of Puerto Carreño, Vichada, Colombia. Under the Agreement, Mr. Climaco undertakes to transfer to AUXICO the rights of possession of Minastyc for a period of sixty-years through a request for title clearance with the National Mining Agency. The legal title of the property is identified with Plate No. LFH-14431X by the National Mining Agency. AUXICO has agreed to pay Mr. Climaco a total of COP 750,000,000 equivalent to CAD 242,457 for Minastyc as follows:

- COP 150,000,000 on signing the Promise of Sale Contract - PAID

- COP 300,000,000 to be transferred at 4 (four) business days after signing the Promise of Sale Contract - PAID

- COP 150,000,000 to be transferred after the PTO has been completed and the Temporary Mining Licence having been issued by the National Mining Agency.

- COP 150,000,000 to be transferred after signing the mining concession contract that arises from the legalization process and the request approved by the National Mining Agency in favor of AUXICO, and the signature of the public deed that recognizes the Promise of Sale Contract in relation to the sale of real estate.

AUXICO Resources Canada Inc. signed an Operational Contract with Minampro Asociados S.A.S. (Minampro) for the Minastyc Property. Minampro is a Colombian company dedicated to the exploration, exploitation and commercialization of minerals. The company

has extensive experience in the mineral sector and especially in the development of activities with several indigenous communities in Puerto Carreño, Vichada. Under the Operational Contract, Minampro will undertake the geological prospecting and exploration activities necessary for the identification, feasibility, and development (including construction of underground and surface infrastructure) of any possible mineral resources to be developed in the future, should they be proven to exist, located in the areas of the Application and/or the Property. AUXICO undertakes to pay the consideration provided in the Operation Contract. Minampro will carry out the above-mentioned activities in accordance with the technical document as provided in the Operation Contract at its own risk with its own resources with full managerial, technical and administrative autonomy.

Any mineral or resource that may be extracted by Minampro in execution of the Operational Contract, and/or in the area of the Application and/or the Property, is the exclusive property of AUXICO. According to the Operational Contract Minampro will issue an invoice to AUXICO on a monthly basis and AUXICO must pay the invoice within fifteen (15) days by electronic funds transfer (EFT).

4.4 Environmental Liabilities

The Minastyc property is located on the west side of the Orinoco River. AMCO Consultores (AMCO) out of Bogota, Colombia have conducted numerous technical and environmental studies within the subject area and have just produced a very detailed document call a "PTO", translated into English is a Program of Work and Exploitation Work for the legalization of Mining on title LFH-14431X – Mining Project Minastyc. AMCO have outlined a series of steps required in order to help mitigate environmental liabilities in the future once the project will the small scale mining permit issued by the National Mining Agency and work can commence (AMCO, 2022).

Outlined in detail in section 24 below are the environment mitigations as described by AMCO in their report dated December, 2021.

AUXICO's QP Joel Scodnick, P. Geo., was onsite on various occasions in 2021 and have seen AMCO consultants in the field carrying out different environmental tests.

There is currently a camp onsite which houses approximately 17 employees including technical assistants, cook, helper, and administration. There are two washrooms with toilets and a shower. There is one building constructed out of wood and a shanty type of kitchen area.

4.5 Surface Rights

The Minastyc property is subjected to surface rights or obligations as defined by regulations of the National Mining Agency (NMA) and Ministerio de Ambiante of Colombia.

5. Accessibility, Climate, Physiography, Local Resources and Infrastructures

5.1 Accessibility

The Minastyc property is located 870 km east of Bogota, Colombia, at the eastern end of the *Llanos Orientales* and can be reached via commercial daily flight from Bogota to Puerto Carreño or by using Highway 40 through Villavicencio to Puerto Carreño located at the junction of the Rio Meta and the Rio Orinoco, Figure 1. Eastern Highway 40 may be hazardous especially during intense precipitations. From Puerto Carreño, the property can be reached by boat on the Rio Orinoco some 14 km to the south or by road, 60 km from Highway 40 to the south and to NNE on dirt roads and tracks in grassy flat lands, Figure 2.

Figure 2 : Location of the Minastyc property on a satellite image also showing the main town, Puerto Carreño at the end of Highway 40, to the north, the Orinoco River and dirt roads and tracks. Image after Google Earth.

Figure 3 : Precipitations in the Minastyc property area.

Figure 4 : Grassy plains of the Colombia Llanos Orientales. Photo AMCO.

Figure 5 : Granite inselberg surrounded by gallery forest. Photo AMCO.

5.2 Climate

The property area shows a tropical climate with wet temperatures averaging 19 to 21° C at night and 30 to 33° C during the day. Temperatures may reach near 45° C between January and April before the rains. Humidity is normally above 77% and precipitations vary from 80 mm in 22 days in March to 390 mm in 30 days in August for an average of 2.5 m per year, Figure 3

5.3 Physiography, Flora & Fauna

The Minastyc property is located along the Rio Orinoco on the Colombian side in grassy flat lands with elevation averaging 55 m a.s.l. It is located at the limit between heavy forest high lands of the Guiana Shield on the eastern Venezuela side and the grassy savanna plains, Figure 4 and gallery forests (along streams) of the Llanos Orientales to the west, Figure 6. The property area shows barren white light brown color on the satellite image distributed on both sides of the river related to specific sandy quaternary deposits accumulated over the millennials along the Rio Orinoco, specific grass vegetation and limited forest cover along streams. А concentration of forest also exists around number of granite inselbergs distributed all along and on both sides of the Rio Orinoco, Figure 5.

The eastern savanna of Colombia shows one of the richest tropical flora and fauna of South America locally threaten by cattle farming, deforestation and other human activities. More than 2000 species of plants are reported belonging to more than 800 genera and 180 families. With respect to fauna and as example roughly 35% of the 1700 bird species of Colombia and 28 amphibian, 119 reptile and number of mammal species are found in the *Llanos Orientales*. It comprises Orinoco crocodile, python, and other snakes, capybara, large felidae, rodents, etc. Further details can be found in Parra-O. (2006), AMCOa (2021) and AMCOb (2021).

Figure 6 : Physiography of the property area along the Rio Orinoco at the limit between higher relief and forest cover of the Guiana Shield to the east and grassy flat plains of the Llanos Orientales to the west. Image after Google Earth.

5.4 Local Resources & Infrastructures

Limited resources and infrastructures do exist in Puerto Carreño, 15 km north of the property. The accessibility of supplies necessary for exploration is hampered by the lack of direct connection between the property area and the nearest town. For example electricity generator and heavy machinery should be supplied from Villavicencio and Bogota, 870 km to the west. Some of the mining personnel may be hired locally.

6. History

In Colombia, historically, alluvial mining has been carried out mostly for gold and is concentrated in both cordilleras in the western part of the country and is related to the proximity of gold sources. See Rodriguez and Warden (1993) and UNODC (2020) for more details. Exploration for alluvial heavy minerals, mainly magnetite and ilmenite, took place offshore in northern Colombia, along the Caribbean Sea (Volp et al., 2009). Inland, artisanal alluvial mining and exploration for heavy minerals (Ta, Nb and REE) are limited in the Vichada and Guaiana Departments and further south in the Rio Guaiana watershed and in Brazil and Venezuela border areas. See Franco Victoria et al., (2021).

Prior to any work conducted by CanaMex on behalf of Auxico, the only activities on Minastyc comprised several exploration pits dug in two general areas of the property. The results are unreliable as there was no supervision of any qualified geologist, nor were the coordinates of the pits measured using a GPS unit. The camp manager was responsible for hiring staff in the field, whom in turn dug up the pits using shovels and pics. No machines were used during this program as there was no environmental permit issued at that time. In Colombia, without an environmental permit it is prohibited to utilize any machinery on mining property. There is no other work having been recorded on the Minastyc Property.

7. Geological Setting & Mineralization

7.1 Regional Geology

The Minastyc property is located in fluviatile Quaternary deposits on the west side of the Rio Orinoco. Further west, the flat lands are underlain by Cenozoic and Mesozoic (Cretaceous) deposits. A W-E section through the Llanos Orientales from the Front

Thrust of the Eastern Colombian Cordillera to the Rio Orinoco, Figure 7a shows change of altitude from Yopal, 350 m a.s.l. to Puerto Carreño on the Venezuela border, 55 m a.s.l. It shows a sub-horizontal succession of to Neogene Cretaceous sequences, favorable for hydrocarbons Figure 7b (see Barrero et al., 2007). At the east end of the Mesozoic to Cenozoic successions, the contact must be discordant on and / or in faulted position with the Mesoproterozoic granite that forms the western portion of the Guiana Shield in the Rio Orinoco large area, Figure 7b.

Figure 7a : Location of W-E section through the Llanos Orientales from Yopal to Puerto Carreño on the Rio Orinoco. Modified from Barrero et al. (2007).

Figure 7b : Section through the Meso to Cenozoic cover of the Llanos Orientales to the Mesoproterozoic granite of the western Guiana Shield. Modified from Barrero et al. (2007).

The eastern plains of Colombia (Llanos Orientales) Neogene and Quaternary deposits are mostly composed of proximal and more distal sedimentation originating from the Eastern Cordillera (molasses) and higher grounds to the west. It also originates from slow dismantling of the Guiana Shield high grounds to the east and south and from aeolian processes, Figure 7b. Along the Venezuela / Colombia border, further east in the Rio Meta and the Rio Orinoco area, recent deposits are mostly fluviatile, composed of grit, gravel, sand, iron oxide and hydroxide, clay, etc. See Goosen (1971) for more details.

The western part of the Guiana Shield shows Mesoproterozoic age (Calymmian) anorogenic granitoids intruding the Paleoproterozoic migmatitic and metasedimentary Rio Negro Terrane, Figure 8. The largest magmatic unit, the Parguaza rapakivi granite stands across the Rio Orinoco and further west and east and southeast and covers more than 30 000 square km. It also intrudes older Trans-Amazonian granites and volcanic sequences and shows ages from 1.55 to 1.40 Ga. Non mineralized anorogenic megacryst biotite granite intrusions with ages around 1.55 Ga abound in the Rio Negro succession block (Bonilla-Pérez et al., 2013, Kroonenberg et al., 2016, 2019a and 2019b, Ibanez-Mejia and Cordani, 2020).

Figure 8 : Western portion of the Guiana Shield showing the location of the Minastyc property with respect to Mesoproterozoic anorogenic granites intruding the Rio Negro sequences and older granites. The Trans-Amazonian Domains are older from Mesoproterozoic to Archean ages. After Kroonenberg et al. (2016 and 2019). **1a** : 1.3-1.2 Ga platform sandstones, **1b** : 1.6-1.5 Ga Parguaza rapakivi granites, **1c** : 1.8 -1.72 Ga Rio Negro magmatic basement, **1d** : Rio Negro high grade paragneisses, **1e** : 2.0-1.95 Ga felsic volcanics and granitoids, **1f** : felsic metavolcanics

7.2 Local & Property Geology

The Minastyc property is located within the Parguaza rapakivi granite showing local ages from 1.392 to 1.402 Ga and represents one of the largest anorogenic granite lacking tectonic deformation (Bonilla-Pérez, 2013, Kroonenberg, 2019b). The property is located at least 100 km east of the western border of an anorogenic large batholith, see section in Figure 7b. The property also lies in recent Holocene detrital mostly alluvial and coluvial deposits formed along the Rio Orinoco and the tributary rivers. Limited contemporary aeolian dune and loess deposits are also recorded in the property area (Gomez and Montes, 2020). It is possibly underlain by older Pleistocene and Neogene deposits. The property also shows high relief windows of Parguaza rapakivi granite (inselberg), Figure 5 and Figure 9. The inselbergs are all surface expression of the Parguaza anorogenic rapakivi granite forming the basement to the alluvial deposits of the Rio Orinoco watershed basins and plains (see below).

Figure 9 : Distribution of the Parguaza granite inselbergs in the Minastyc property area forming high relief windows (light brown closed surfaces) in extended Holocene detrital sediments, local aeolian deposits and soils. Image after Google Earth.

The anorogenic granites of the western Guiana Shield have long been studied for geochemistry and geochronology. See Sidder and Mendoza (1995) for extended references. More recent works by Bonilla-Pérez et al., (2013) on the geochemistry of the granite in Colombia showed 66.7 to 75% SiO2, 11.1 to 14.5% Al2O3, 5 to 7.5% K2O and 2.9 to 5.4% Na2O, etc. falling in the syeno and monzo-granite fields of Streckeisen classification. It shows granoblastic texture, with mm to cm crystal sizes, well developed rapakivi textures, biotite-hornblende, Na amphibole and aplite internal phases and late aplite, granodiorite, pegmatite and quartz dykes and veins. The Parguaza granite fall into late to anorogenic geochemistry field in the R2-R1 diagram of Batchelor and Bowden (1985) cited in Bonilla-Pérez et al., (2013).

7.3 Property Mineralization

The property mineralization are located within the Neogene alluvial sediment horizons underlying the top soil and composed of lithic fragments of granite and pegmatite, gravel, grit, conglomeratic sand, iron oxide and hydroxide, silt and clay. According to a recent studies in the property area, it is mostly composed of Ti, Nb, Ta, $Sn, \pm Zr \pm V$ and REE minerals like

Ilmenite (Fe2TiO3), Columbo-Tantalite (Mn,Fe)4(Nb,Ta)8O24,

Cassiterite (Sn±(Ta,Nb,W,Mn,Sc)O2), Monazite (Ce,La,Nd,Th)PO4),

Ta-Rutile (Ti,Ta,Fe)O2), etc. showing variable alteration and dissemination in detrital alluvial horizons below the top soil (AMCOa, 2021). These minerals are known to be contained in the Parguaza rapakivi granite mostly concentrated in the late pegmatitic and aplitic phases and in greisen zones related to hydrothermal alteration (see also Cramer et al. 2011, Franco et al., 2021 and below).

8. Deposit Types

Ta, Nb, Sn and REE mineralization area known to be found in various magmatic Precambrian and younger environments and associated with HFSE (high field strength element) U, Th, Ti, Cs, Be, Li, Zr, V, W, etc. Rare-element or metal producing districts of the world are dominantly associated with peralkaline and peraluminous granitoids. See Linnen and Cuney (2005), Schulz et al. (2017) and Van Gosen et al. (2017) for a review and details on mineral geochemistry and mining.

Various deposit types can be classified as

- pegmatite-related Ta, - peraluminous granite-related Ta \pm Nb, - carbonatite-related Nb and - peralkaline complex-hosted Nb-Ta-REE (Mackay and Simandl, 2015).

Comparable mineralization are also known in various anorogenic granite of Proterozoic ages in shields of Finland, India and Guiana. The Parguaza granite is located in the western parts of the Precambrian Guiana Shield straddling Venezuela and Colombia and shows Sn, Ta, Nb, W, Zr, Hf, Ga, Ge, Re and REE (\pm U, Th, Mn) mineralization expressed as cassiterite, columbo-tantalite, monazite, rutile, pyrochlore, ilmenite and other complex minerals.

It should be mentioned that the important Pitinga tin (Sn) mine is located in the Agua Boa granite in Brazil. It can be correlated with rapakivi anorogenic granite of Mesoproterozoic ages like the Surucucus granite also in northern Brazil. Moreover the major Pijiguaos bauxite deposit is developed in the laterite profile of the Parguaza granite in Venezuela (see Sidder, 1990, 1995, Cramer et al., 2010, Mackay and Simandl, 2015 and Kroonenberg et al., 2019a).

Sn, Ta, Nb, REE, W, Ti and Zr mineralization are known to exist in quartz pegmatite, aplite veins and greisen zones (quartz-muscovite-fluorite, tourmaline, etc.) of the Parguaza granite (Pérez et al., 1985, Sidder, 1990, 1995, Kamilli et al., 2017). It follows that local mineral concentrations do exist all along the alluvial and coluvial sedimentation of the Rio Orinoco and Rio Negro watersheds in the Vichada and Guainia Departments. It shows the same minerals as above with various alteration, presence of iron oxide and hydroxide and possibly local pure metal concentrations due to the

destruction of the various phosphate and oxides (Bonilla Pérez et al. 2013a and Franco et al., 2021).

9. Exploration

Exploration works took place on the Minastyc property from 2020 to 2021 and was carried out by Jaramillo (2021), JAPOSAT Satellite Mapping, AMCO Consultores and Servicios de Mineria CanaMex S.A. de C.V.

Following works done in 2019 by Juan Guillermo Garcia and JAPOSAT remote sensing analyses, geologist, M. Jaramillo visited the property in late 2020 and early 2021 while working on the Venezuelan side of the Rio Orinoco in similar mineralized Parguaza granite, saprolite and alluvial deposits. The author claims coltan (Ta2O5) mineralization in Minastyc but the information remains qualitative as he does not provide sample coordinates or certificates of analyses (Jaramillo, 2021).

AMCO Consultores carried out various exploration works in 2020 and 2021, including drone photo-mosaic surveying and topography, hydrology and pedology works, surface geology, geophysics, surface sampling, geochemistry, mining geology and engineering and environmental and social baseline study (AMCOa, 2021).

Servicios CanaMex carried out surface geology, sampling and analytical works in 2021 (Pelletier and Scodnick, 2022).

9.1 Satellite Imagery / Remote Sensing

JAPOSAT produced various images of the Minastyc property area based on satellite data as follow (Popiela, 2020).

1-Multispectral geobotany and litho-structural mineral targeting was applied to map the spectral anomalies of the vegetation and the surface geochemistry, to map the lithostructural features in the rock types, to combine the geobotanical and soil results with the litho-structural interpretation and to identify mineral exploration target areas.

2-50 cm resolution images were produced using - Pleiade's bands 1, 2, 3 enhanced for geology to produce a natural color composite image- Pleiade's bands 1, 2, 4 used to produce a false infrared color composite image - Landsat's band 10 and 11 used to produce a radiance image.

Note that these images were produced on the property area, AOI-1 and in the area adjacent to the southwest, AOI-2. 50 cm AOI-1 natural color image is used in the present report. Fracture lineament map was produced using the radiance image and lithological and sampling target maps were produced from the geobotany spectral data. Such a map is presented along with 2021 analytical results at the end of section 9.5 below.

JAPOSAT produced a similar report on areas surrounding the Minastyc property with lineament, spectral analytical, recommended sampling and flow accumulation maps using high resolution satellite and radar images (Popiela, 2021).

Note that the various satellite images were referenced using datum WGS84 in UTM zone 19 projection.

9.2 Topography

The topography of the property area was carried out by AMCO through photomosaic and land surveying. The following map gives detail information on the variation of relief on the property outlining the presence of granite inselbergs, Figure 10 (See also Figure 5). Note the general flatness of the property all around the inselbergs, the light slope toward the Rio Orinoco from 93 m to 79 m a.s.l. from south to north of the property, the proximity of the Rio Orinoco, less than one kilometer and the presence of NNE oriented streams on the property, the Caño Panuelo, Caño NN and Caño San José.

Note that the maps produced by AMCO Consultores (AMCOa, 2021) were projected using Magna-Sirgas CMT12 datum in Traverse Mercator projection with 4° N, 73° W

reference coordinates. Also a photo-mosaic quality report does exist in the database for the Minastyc property, but no data was provided to the authors of the present report.

Figure 10 Topography the of Minastyc area showing the flatness of the property around the granite inselbergs and the proximity of the Orinoco. Rio After AMCOa (2021).

9.3 Geophysics

Two different geophysical surface techniques were applied on the Minastyc property by AMCO Consultores. In order to assess the nature and stratigraphy of the alluvial and coluvial sedimentation at shallow depth, 5 seismic refraction lines and 4 IP lines were tested on the Minastyc property, Figure 11. Results from Figure 12 to 16 show consistency in the thickness of the top deposit from line LS1 to LS2, a decrease toward line LS3 and increase again from line LS4 and LS5. The top of the lines shows the following wave velocity characteristics (in meter per second, m/s):

Line	Vp	Line Vp	Line Vp
LS1 :	245 m/s	LS3:271 m/s	LS5:331 m/s
LS2 :	292 m/s	LS4:229 m/s	

According to AMCOa (2021) these low P wave velocities are related to a sterile top horizon of about 5 m thickness mostly composed of quartz grit and gravel sands. It could be confirmed by resistivity line T1 although the top resistive horizon seems much thicker. Line T3 also shows a thin resistive top horizon that could be correlated with line T1, Figure 17 to 20.

P and S wave velocities do vary a lot in the same alluvial or detrital horizon and is dependent upon density, porosity, granulometry, water and mineral oxide and hydroxide content, etc. Similarly, it should be noted that the conductivity of alluvial or detrital sedimentation does increase with water and electrolyte content and porosity.

It should be noted that if the resistivity images provided by AMCOa (2021) are pseudo-sections, data should be reprocessed to get inversion sections.

Shallow probing of alluvial sediments using seismic refraction and IP methods should be accompanied with direct access to nearby grounds by means of pits or trenches parallel to the IP or seismic lines and used as comparative tools to make precise geological descriptions and sampling, describe precise stratigraphy and ground structures and make sound correlations.

Figure 11 : Detail satellite image with the distribution of pits and trenches, seismic and IP lines carried out by AMCO Consultores on the Minastyc property. Note the presence of the granite inselbergs.

Figure 12 : Refraction line LS1 showing wave speed of 245 m/s over 3.75 m defining a relatively homogeneous top layer, with variations in lower units.

Figure 13 : Refraction line LS2 showing wave speed of 292 m/s over 4 m defining a relatively homogeneous top layer and thickness increase in lower units from NW to SE.

Figure 14 : Refraction line LS3 showing wave speed of 271 m/s over 3 m defining a relatively homogeneous top layer.

Figure 15 : Refraction line LS4 showing wave speed of 229 m/s over 2.5 m defining a constant top layer.

Figure 16 : Refraction line LS5 showing wave speed of 331 m/s. It defines a top layer varying from 3 to 5m.

IP Lines

Figure 17 : Resistivity pseudo-section T1 showing higher conductivity below 15 m and homogeneous top high resistive top unit 7 m thick.

Figure 18 : Resistivity pseudo-section T2 showing medium resistivity in the top 10 m decreasing at depth.

Figure 19 : Resistivity pseudo-section T3 showing higher resistivity in the top 5 to 7 m decreasing between 15 to 25 m depth.

Figure 20 : Resistivity pseudo-section T4 showing heterogeneous high resistivity in the top 15 m decreasing locally at depth to 25 m depth.

Minastyc Technical Report - Vichada, Colombia

9.4 Geology, Sampling & Analyses by AMCO

Surface geological mapping of the property was carried out by AMCO Consultores and most of the results can be found in AMCOa (2021) and in separate maps. The property carries only three geological units at surface. The Parguaza granite forming inselbergs, surrounding ferricrete and top soil covering the alluvial Quaternary deposits of the rest of the property

Parguaza Granite Inselberg

The Parguaza granite forms hectometric and kilometric size inselbergs along the west side of the Rio Orinoco. It forms high relief windows popping out of the alluvial Quaternary deposits, Figure 5, 9, 10 and 21. The rock is homogeneous, coarse-grained with late aplite, pegmatite and greisen phases or dykes and late quartz veining, Figure 22.

Figure 21 : Parguaza granite inselberg and flat lying outcrop west of the Rio Orinoco. Photo AMCO.

Figure 22 : Coarse grained Parguaza granite showing cm size pegmatite dyke. Photo AMCO.

The rock is equigranular with mm to cm size granulometry showing quartz, feldspar, orthoclase, biotite, amphibole mineralogy, Figure 23. The Parguaza granite belongs to the Mesoproterozoic anorogenic granite of the western Guiana Shield that have been studied since the 1980's for their geochronology, geochemistry and Sn, Ta-Nb-REE mineralization. See sections above. A study of brittle deformation in the granite shows predominance of WNW-ESE, NW-SE and SW-NE-trending fracturation (AMCOa, 2021).

Figure 23 : Coarse grained pegmatoid Parguaza granite. Photo AMCO.

Ferricrete

Hard, fine grain stratified ferricrete (iron duricrust alteration) composed of limonite-hematite-goethite with local granular porous texture is described by AMCOa (2021), Figure 24. It is said to lie directly on the granite suggesting strong alteration and iron precipitation on the paleosurface. Later the duricrust was covered by Neogene fluviatile sedimentation, Figure 26 below.

Figure 24 : Ferricrete formed on granite paleosurface. Photo AMCO.

In arid tropical terrain ferricrete is related to an aluminum and silica leaching of the basement, an upward migration and precipitation of iron \pm manganese oxides and hydroxides at surface related to the cyclic variation of the water table height and intensive evaporation. In Minastyc, the duricrust seems to be related to the alteration and precipitation of iron hydroxides on granite paleosurfaces implying the possible presence of saprolite and saprock below the ferricrete.

Ferricrete and iron duricrust have been largely studied. Experiments quoted by Nahon and Tardy (1992) shows the precipitation of clay, calcite, kaolin and upward iron hydroxides enrichment in artificial weathering zones under seasonally humid climates, Figure 25. One would find more reviews and details on iron-rich soils and laterites in Legros (2013).

Figure 25 : Upward Al-Si leaching and iron enrichment section in granite alteration zone. After Nahon and Tardy (1992).

A recent study of a lateritic profile overlying the Parguaza granite shows a well developed pisolithic ferricrete alteration composed of goethite, hematite, limonite and quartz fragments. The profile is 1.5 m thick or so and located in Cachicamo south of Puerto Ayacucho on the west side of the Rio Orinoco. It is located on Parguaza granite and shows the presence of tantalo-rutile or strüverite (Ti,Ta,Nb)O2, columbite and cassiterite mineralization, Franco et al., (2021).

Figure 26 : Formation of a ferricrete above the Parguaza granite during Neogene seasonally humid tropical climate followed by the deposition of Quaternary alluvial sediments in the Rio Orinoco watershed. After AMCO Consultores map and sections, 2021.

Quaternary Alluvial Deposits

The surficial study of alluvial deposits was carried out by AMCO Consultores by digging pits and trenches on the Minastyc property, Figure 27, with the following coordinates, Table II (AMCOa, 2021). It shows test pitting done to the west outside of the property in the Caño Pañuelo area. Description, pictures and drawings are provided by the author but no location or coordinate are given to refer the pictures to the distribution map.

Figure 27 : Distribution of AMCO pits and trenches in the Minastyc property (AMCOa, 2021).

Tr Id	E z19	N z19	Prof m	Sample Id	N cmt12	E cmt12
T1	668600	669503	1,6	CCET01R	2230167	5611903
Т2	668609	669504	1,7	CCET02R	2230168	5611912
Т3	668614	669485	1,8	CCET03R	2230149	5611917
T4	668575	669507	2	CCET04R	2230170	5611878
Т5	668534	669505	2	CCET05R	2230168	5611837
Т6	668530	669539	2,1	CCET06R	2230202	5611832
T7	668213	669484	0,3	CCET07R	2230415	5611514
Т8	661406	669687	0,25	CCET08R	2230298	5604680
Т9	668260	669834	2	CCET09R	2230496	5611559
T10	668299	669903	2	CCET010R	2230566	5611598
T11	668340	669974	2	CCET011R	2230638	5611638
T12	667873	670160	6	CCET012R	2230821	5611168
T13	666284	669855	2	CCET013R	2230503	5609575
T14	666861	669698	2,1	CCET014R	2230349	5610156
T15	667532	669543	2,2	CCET015R	2230199	5610830
P1	666527	671039	Activ seds	CCEB01	2231693	5609810
P2	668582	670103	Activ seds	CCEB02	2230769	5611880
T16	666327	670258	2	CCET016R	2230908	5609617
T17	666485	670363	2	CCET017R	2231014	5609773
T18	666624	670467	2	CCET018R	2231120	5609912

Table II	[:]	Pit	and	trench	coordinates	by	AMCO	Consultores
----------	-----	-----	-----	--------	-------------	----	------	-------------

Figure 28 shows the Quaternary surficial deposit composed of thin soil underlain by coarse grained hematite-rich horizon going down to 50 cm followed mostly by gravel and sand with limonitic matrix, iron-rich remnants and local concentrations of clays. Supplementary photographs show

- a hematite-rich dark brown coarse grain horizon about 30 cm thick underlain by stratified limonitic gravel and sand thick horizon, Figure 29,

- a hematite-rich dark brown coarse grain horizon about 50 cm thick underlain by orange homogeneous limonitic gravelly sand, Figure 30,

- a hematite-rich dark brown grit horizon about 25 cm thick underlain by quartz and plagioclase bearing iron-rich sand and grit and limonitic sand, Figure 31,

- a hematite-rich dark brown grit horizon about 40 cm thick underlain by limonitic sand with plagioclase and sericite alteration and iron-rich crust, Figure 32.

Figure 28 : Section in surficial alluvial deposit in the Minastyc property. Photo AMCO

arenitic soils iron-rich crust sand, gravel with iron-rich matrix remnant of iron-rich crust sand, gravel and iron-rich matrix clays

CanaMex 👞

Figure 29 : Section in surficial Quaternary deposits. Photo AMCO.

Figure 30 : Section in surficial Quaternary deposits. Photo AMCO.

Figure 31 : Section in surficial Quaternary deposit. Photo AMCO.

-- hematite-rich coarse grain horizon -30 cm

-- sand and gravel w iron crust, quartz & plagioclase fragments

-- orange red limonitic sand

-- limonitic sand w quartz & plagioclase

Figure 32 : Section in surficial Quaternary deposit. Photo AMCO.

Sampling & Analytical Results

AMCO Consultores carried out sampling of the pits and trenches and produced heavy mineral concentrates that were sent for XRF analysis. The sample locations are listed in Table II and appear in Figure 27. The analytical results appear in Table III. Note that AMCOa (2021) do not provide sampling details, provenance of the concentrates, QAQC nor any detail on the laboratory that carried out the analyses. Anyhow and in spite of the lack of information on the whole sampling and analytical process, results remain qualitative and suggest the presence of columbo-tantalite, cassiterite, rutile and possibly ilmenite or pyrochlore in the heavy mineral concentrates.

Id	TiO2 %	Nb2O5 %	Fe2O3 %	Ta2O5 %	SiO2 %	SnO2 %
Auxico 1	42,85	25,44	13,32	8,28	3,3	0,58
Auxico 4	0,83	53 ppm	8,82	-	63,49	-
Auxico 5	0,48	40 ppm	47,56	-	45,5	-
Auxico 8	0,64	0,26	83,8	0,21	6,71	4,29
Auxico 11	2,78	0,81	17,6	0,66	39,72	1,49
Auxico 13	0,27	0,03	68,02	0,04	27,04	0,13
Auxico 16	0,12	-	0,9	-	94	-
Auxico 18	0,07	0,33	5,62	0,33	5,85	0,57
Auxico 21	0,03	18 ppm	0,09	-	99,3	-
Auxico 23	18,91	3,24	9,71	9,29	6,71	47,2

Table	III :	АМСО	analytical	XRF	results

AMCO Consultores provided analytical results performed on 500 g of 5 concentrates of undisclosed provenance analyzed by XRF. The following results, Table IV, also suggest the presence of columbo-tantalite, cassiterite and possibly pyrochlore and zircon in the concentrates.

El	Conc	Sample (g)	Result (%)	Eİ	Conc (g)	Sample (g)	Result (%)
Та	500	14.22	2.84	Nb	500	11.29	2.26
Sn	500	14.67	2.93	V	500	0.33	0.07
				Zr	500	2.35	0.47

Table IV : AMCO 500 g analytical results

9.5 Geology, Sampling & Analyses by CanaMex

As a consultant for CanaMex and Qualified Person for AUXICO Resources on the project, Joel Scodnick (JS) P. Geo., spent time from August to December 2021 on the Minastyc property and carried out mapping and sampling of the various pits and trenches. The distribution of the stations and samples differs notably from the AMCO program. The ground works are concentrated to the southeast around small granite outcrops, in the center of the property in Area 50 and around the granite inselbergs, Figure 33.

Figure 33 : Distribution of the station sites on the Minastyc property and samples taken in August and December 2021 by CanaMex with the location of the camp, the disembarking site along the Caño NN, a washing site in the centre of the property and **area 50** where a bulk sample was taken. See below.

Geology of Granite & Alluvial deposits

As already shown by AMCO Consultores, the alluvial deposits of the Minastyc property are mostly composed of a thin soil with organic components, a 25-50 cm dark brown or red iron-rich coarse-grained horizon, a 1 to 2 m yellow or brown sand and a lower fine to coarse-grained unit containing quartz, plagioclase, lithic fragments and heavy minerals, Figure 34.

Figure 34 : Section through the Quaternary alluvial deposits at sample site S00357753 showing an iron-rich coarse-grained horizon underlain by dominant yellow brown sand and gravel. Photo JS.

2021. In August the various existing pits and trenches were described, photographed and sampled. A stratigraphy was established where possible. The details are given in Appendix I and show that most of the available surfaces in pits or trenches were vertically sampled along channels or on wider surfaces and large quantity of sample material was collected weighting between 6 to 24 kg. Some of the samples were taken directly from adjacent stockpiles. In area 50, Figure 34, a large sample was taken weighting more than 3 tons. The samples, mostly composed of fine to coarse grain limonitic or hematitic material were washed and sieved to obtain a quantity of concentrate, proper for analysis. The sample weight and sample/concentrate ratio are given in Appendix I.

Concentrate samples where sent to Bogota at the Alpha1 Servicios Analiticos laboratories and analyzed via XRF for major, trace and RE elements. See section below.

Samples were washed and heavy minerals separated and prepared for chemical analysis. A stratigraphy was established were possible and a report on heavy mineral alluvial deposit was produced in February 2022 (Pelletier and Scodnick, 2022). The report synthesized the stratigraphy of the alluvial deposits on the Minastyc property and defined 6 different superposed units.

Parguaza granite - At the base, it comprises a rapakivi granite showing medium to coarse grain orbicular like textures, Figure 35. The granite also shows coarse grain pegmatoid textures and forms large inselbergs (see Figure 23, 26 and above).

Saprolite - The granite is overlain by variable thickness of saprock or saprolite, a tropical alteration resulting in transformed but autochthonous unit of clay, quartz, hematite, iron hydroxides, manganese oxide, etc. preserving the rock textures and structures.

Figure 35 : Parguaza rapakivi granite showing medium to coarse grain orbicular texture. After Pelletier & Scodnick (2022).

Sediment 1 - The first detrital unit overlying the Parguaza granite saprolite is a medium to coarse grain conglomeratic more or less consolidated sand showing sub-rounded centimeter size quartz pebbles, mm to sub-mm size quartz and heavy minerals, limonite and iron hydroxides, Figure 36.

Figure 36 : Sediment 1 - Quartz pebble and heavy mineral conglomeratic sand. After Pelletier & Scodnick (2022).

Sediment 2 - The second overlying detrital unit is a clay and kaolinite-rich conglomeratic sand showing cm size sub-rounded quartz pebbles, heavy minerals, iron hydroxides and limonite, Figure 37. Sediment 1 and 2 are fertile for heavy minerals and are mostly found close to the granite inselbergs preferably on the northeastern side, Figure 26 and 33.

Figure 37 : Sediment 2 - clay-rich and quartz pebble conglomeratic sand. After Pelletier & Scodnick (2022).

In the southeast side of the property, in the vicinity of the granite outcrop, Figure 26, lithified quartz-rich sediment 1 is in contact with the bedrock. Both granite and sediment 1 show irregular surface and gaps are filled with sediment 2. conglomeratic clay-rich Further up the later shows angular fragment of lithified sediment 1, Figure 38. According to the descriptions by Pelletier & Scodnick (2022) sediment 1 and 2 are possibly genetically related. The presence of sub-rounded quartz pebbles in both units and the fact that sediment 2 locally contains sediment 1 inclusions of various sizes suggest that sediment 1 and 2 are different results of the same process occurring immediately above the Parguaza granite saprolite. It also suggests that sediment and 1 2 are partly parautochthonous and related to proximal sedimentation and "lateritization" processes. Due to differential actions of water and variations in mineral migration and alteration, in sediment 1 there is a higher concentration of heavy mineral and iron oxides and hydroxides.

Figure 38 : Angular clast of hematite-rich lithified sediment 1 in sediment 2. After Pelletier & Scodnick (2022).

In sediment 2 there is a higher clay and layered kaolinite content and more scattered heavy minerals related to higher original concentration of feldspars, in the sediment, Figure 37. By analogy with standard lateritic profiles in tropical terrain, the presence of a ferricrete or iron concretion horizon immediately above the granite saprolite horizon, Figure 39, suggests a peneplanation at the time, a dry climatic episode, seasonal variations of the water table and a migration of iron oxides and hydroxides and a layered precipitation of iron at surface.

Sediment 3 - The third overlying alluvial unit, is mostly composed of a layered sand containing iron oxides and hydroxides and limonite and cm size kaolinite-rich horizons, Figure 40. The presence of kaolinite-rich horizons suggests an original high feldspar content during sedimentation and later lateritic processes transforming the feldspars into clay and kaolinite.

Sediment 4 – The fourth and last overlying alluvial unit is composed of microconglomeratic lithic sand with minor hematite, iron hydroxide and limonite content, Figure 41. It possibly originates from a mixture of sediment 1 and 2 and layered sediment 3.

Figure 39 : Sediment 2 conglomeratic and clay-rich unit with inclusions of conglomeratic sediment 1. Note the presence of a 50 cm iron concretion (ferricrete) horizon and granite saprolite at the bottom of the pit. After Pelletier & Scodnick (2022).

Figure 40 : Sediment 3 - hematitic, kaolinite-rich and limonitic layered sand. After Pelletier & Scodnick (2022).

Figure 41 : Sediment 4 - micro-conglomeratic sand with minor iron oxides or hydroxides. After Pelletier & Scodnick (2022).

Mineralization

The mineralization are represented by the heavy fraction present in the various alluvial deposits, principally in the lower conglomeratic units. The fraction mostly contains euhedral, subhedral or rounded and cm size ilmenite, columbomm tantalite, monazite, cassiterite, zircon and possibly xenotime, rutile and magnetite, Figure 42. The analyses carried out in the field are only qualitative and suggest that columbo-tantalite and ilmenite are concentrated sediment 2 in in the

southeast of the property (TA area) in the vicinity of a granite outcrop and monazite more present in sediment 4 in the center of the property in area 50 (see Figure 26, 33 and below). To the southeast in the TA zone, a 10 cm quartz pebble bed 1 m above an hematite-rich saprolite shows a concentration of interpreted columbotantalite mineralization (Pelletier & Scodnick, 2022)

Figure 42 : Heavy minerals found in sediment 2 in the southeast of the property. After Pelletier & Scodnick (2022).

Sampling

In December 2021, systematic sampling was carried out in the pits of interest. Vertical channels were dug over 1 to 2 m on clean surfaces from bottom to surface to avoid contamination. Longer samples were taken to evaluate different units. A total of 38 samples were taken, Table V. 15 kg of material was extracted, 3 kg was sent for multi-element analyses and 12 kg was washed and heavy mineral concentrate was produced and analyzed via portable XRF. At this time only qualitative analyses available. The XRF geochemical are analytical results are pending.

Id	Sample no.	Easting	Northing	El	From	То	Ι	Summary	Kg	Description	Litho
Pit-Zona50	S00357820	667851	670210	97	0	1	1	IC hm+		Iron oxides concretion (surface) + sand	Sed 3
Pit-Zona50	S00357821	667851	670210	96	1	2	1	Sand hm+		Sand quartz rich fine (platform)	Sed 3
Pit-Zona50	S00357822	667853	670209	95	2	3	1	Sand hm+		Sand quartz rich fine (platform)	Sed 3
Pit-Zona50	S00357823	667853	670209	94	3	4	1	Sand hm+ 20% Con hm+		Sand quartz rich fine (platform)	Sed 4
Pit-Zona50	S00357824	667853	670209	93	4	5	1	Sand hm+/-		Sand quartz rich fine (platform)	Sed 3
Pit-Zona50	S00357825	667853	670209	92	5	6	1	Sand hm+/-		Sand quartz rich fine (platform)	Sed 3
Pit-Zona50	S00357826	667853	670209	91	6	7	1	Sand hm+/-			Sed 3
Min21-PCC0004a	S00357827	667838	670185	95	0	1	1	IC Sand clay+/- hm+	13 <i>,</i> 5	Iron oxides concretion (surface) + hematite rich sand, important variation of clay, from surface to 1m.	Sed 3
Min21-PCC0004b	S00357828	667838	670185	94	1	2	1	Sand hm- clay++	15	Sand with hem spots, clay rich zone. 1 to 2m deep, = samples is 1m below PCC0004a	Sed 3
Min21-PCC0004c	S00357829	667830	670204	95	0	1	1	IC Sand clay+/- hm+	15	Iron oxides concretion (surface) + hematite rich sand, important variation of clay, from surface to 1m.	Sed 3
Min21-PCC0004d	S00357830	667830	670204	94	1	2	1	Sand hm- clay++	14,8	Sand with hem spots, clay rich zone. (1 to 2m deep, = samples is 1m below PCC0004c	Sed 3
Min21-PCC0005	S00357831	667821	670224	95	0	2	2	IC Sand clay+/- hm+	16	Iron oxides concretion (surface) + hematite rich sand, important variation of clay	Sed 3
Min21-PCC0006a	S00357832	667865	670298	55	0	2	2	IC ARN clay+/- hm+	15		Sed 3
Min21-PCC0006b	S00357833	667865	670298	54	2	3	1	Sand 40% Con	15,2		Sed 4
Min21-PCC0006c	S00357834	667865	670298	53	3	4	1	Sand 10% Con	15,8		Sed 4
Min21-PCC0007a	S00357835	667743	670258	49	0	1	1	IC clay+	15,7		Sed 3
Min21-PCC0007b	S00357836	667743	670258	48	1	3	2	Sand hm+/-	15,8		Sed 3
Min21-PCC0008a	S00357837	667156	670311	51	0	1,2	1,2	Sand hm-	16		Sed 3
Min21-PCC0008b	S00357838	667156	670311	49	1,2	3,8	2,6	IC hm+ Sand hm-	16		Sed 3
Min21-PCC0009	S00357839	667565	670110	51	0	1,3	1,3	Sand hm-	16		Sed 3
Min21-PCC0010a	S00357840	667897	670029	54	0	1,4	1,4	IC hm + Sand hm-	16,2		Sed 3
Min21-PCC0010b	S00357841	667897	670029	52	1,2	3	1,8	IC Sand 10% Con	16		Sed 4
Min21-PCC0011	S00357842	667946	670100	48	0	2	2	IC clay+ Sand hm-	16		Sed 3
Min21-PCC0012a	S00357843	667890	669891	50	0	1	1	Sand lim- 10% Con	16		Sed 4
Min21-PCC0012b	S00357844	667890	669891	49	1	2,6	1,6	IC Sand hm+ SandP 40% ConP	16		Sed 4c
Min21-PCC0013	S00357845	668089	669899	52	0	2	2	Sand clay+ lim- SandP 30% ConP	16		Sed 4c
Min21-PCC0014w	S00357846	668626	669460	55	0	1	1	Sand hm+ clay+	16		Sed 2
Min21-PCC0014x	S00357847	668626	669460	54	1	2	1	Sand hm- clay++	16		Sed 2
Min21-PCC0014y	S00357848	668626	669460	53	2	3	1	Sand hm- clay++ 10% Con	16		Sed 2a
Min21-PCC0014z	S00357849	668626	669460	52	3	4	1	Grd Rap	16	Bedrock: Saprock of the granite rapakivi texture.	Bedrock

Table V : Locations and descriptions of December 2021 samples on the Minastyc property.

Minastyc Technical Report - Vichada, Colombia

Min21-PCC0015v	S00357850	668633	669467	51	0	1,5	1,5	Sand hm- 30% Con	16,1	Sed 2a
Min21-PCC0015w	S00357851	668633	669467	49	1,5	2,5	1	Sand hm- 15% Con	16,2	Sed 2a
Min21-PCC0015x	S00357852	668633	669467	48	2,5	3,5	1	Sand hm- clay++ 10% Con	16,1	Sed 2b
Min21-PCC0015y	S00357853	668633	669467	47	3,5	4,5	1	Sand hm- clay++ 10% Con	16,5	Sed 2b
Min21-PCC0016w	S00357854	668625	669440	51	0	1	1	Con sand hm+	16,1	Sed 2a
Min21-PCC0016x	S00357855	668625	669440	50	1	2	1	Con sand hm+/-	16,3	Sed 2a
Min21-PCC0016y	S00357856	668625	669440	49	2	3	1	Con Sand hm++	16,1	Sed 2a
Min21-PCC0016z	S00357857	668625	669440	48	3	4,6	1,6	Sand 10% Con clay+	16	Sed 2c

SandP: Polymictic sand. Con: Conglomerate, ConP: Polymictic conglomerate, IC: Iron oxide concretion, Grd: Granitoid, Rap: Rapakivi texture, lim: limonite, hm: hematite, -: trace, +: weak, ++: moderate, +++: strong

August 2021 Analytical Results

XRF analytical results for 37 samples taken by Canamex in August 2021 are shown on Table VI and locations of samples are shown on Figure 43. Only significant element values are being discussed in the following and a complete table of results is available in Appendix IV. The following results in percent show a distinct variation in the element mean content related to the granulometry of the concentrate sample.

Conc. Size	Sample w. g	SiO2	AI2O3	TiO2	Fe2O3	K20	LOI	ZrO2	MnO
Fine	30	39,8	2,64	24,5	23,1	0,2	0,3	8	0,08
Coarse	3800	48,3	16	0,5	26,9	0,9	7	0,07	1

Figure 43 : Location of 2021 samples on the eastern side of the property showing coincident samples returning different TiO2, ZrO2, Al2O3 and LOI related to the granulometry of the concentrate.

Lab Id	X z19	Y z19	SiO2	AI2O3	TiO2	Fe2O3	К2О	P205	LOI	ZrO2	MnO	SnO2	Nb205	HfO2	Wtg
S00357751	668625	669464	56,19	2,19	19,51	14,17		0,40	0,34	3,94	0,64	1,14	0,24	0,17	44
S00357752	668635	669463	47,72	1,88	23,24	19,54		0,11		5,33	0,82	0,86	0,15	0,08	32
S00357753	668622	669435	33,55	2,60	28,01	26,49		0,07		7,58	1,16	0,06	0,16	0,16	23
S00357754	668622	669435	18,31	1,12	33,16	31,84	0,14	0,18		12,36	1,34	0,13	0,78	0,39	9
S00357756	668616	669420	33,84	2,30	28,75	26,00		0,09		7,34	1,21		0,17	0,14	3
S00357757	668655	669430	40,08	2,01	26,38	24,66		0,06		5,45	0,93		0,15	0,10	43
S00357758	668682	669423	23,76	1,13	30,22	31,25		0,11		11,55	1,26		0,16	0,41	12
S00357759	668682	669423	47,57	1,78	23,32	20,36		0,04		5,61	0,91		0,13	0,13	49
S00357760	668738	669466	26,87	0,77	18,62	25,32		0,09		26,06	1,26		0,22	0,67	5
S00357762	668153	669747	53,57	2,17	19,20	18,16	0,19	0,04		5,46	0,80		0,12	0,28	26
S00357763	668142	669692	36,63	9,28	22,30	22,65	0,40	0,12		7,09	0,82		0,15	0,24	34
S00357764	668146	669605	42,91	6,12	23,61	17,91		0,09		8,01	0,72		0,15	0,27	23
S00357765	668096	669646	33,20	1,94	29,31	28,11		0,05		5,59	1,18		0,18	0,28	76
S00357766	668074	669689	42,23	1,94	26,03	23,13		0,03		5,15	0,97		0,16	0,19	36
S00357767	667585	669499	60,06	2,45	16,36	16,76	0,06	0,07		3,09	0,65		0,10	0,08	35
S00357774	668635	669463	65,19	8,90	0,30	20,50	0,18	0,10	4,72	0,03					1900
S00357776	668622	669435	61,62	7,60	0,29	25,18	0,07	0,17	5,01	0,05					5700
S00357777	668616	669420	52,57	12,61	0,37	26,85	0,07	0,13	7,21	0,08					5400
S00357778	668655	669430	42,42	18,33	0,53	29,79	0,06	0,11	8,53	0,12					7100
S00357779	668682	669423	57,04	7,92	0,29	28,71	0,10	0,22	5,66	0,04					7700
S00357780	668682	669423	36,71	20,46	0,52	32,06	0,03	0,14	9,77	0,07	0,14				5700
S00357781	668738	669466	49,52	10,92	0,30	32,62	0,38	0,19	5,92	0,05					6900
S00357782	668153	669747	47,58	23,35	0,91	16,35	2,39	0,21	8,85	0,11	0,03		0,00		2700
S00357783	668142	669692	65,91	19,48	0,34	3,51	6,18	0,11	3,78	0,05	0,09				2700
S00357784	668146	669605	89,53	6,54	0,11	1,57		0,02	2,13	0,03					1600
S00357785	668096	669646	17,62	19,72	0,77	51,25	0,24	0,22	10,02	0,10					2600
S00357786	668074	669689	37,78	23,33	1,13	26,93	0,21	0,21	10,05	0,15					1800
S00357787	667585	669499	45,00	30,59	0,59	11,56	1,90	0,22	9,54	0,07			0,00		1800
S00357789	667155	669776	50,87	17,78	0,58	23,59	0,78	0,12	6,07	0,04					3000
S00357790	667663	670030	33,82	13,86	0,50	44,55	0,67	0,09	6,38	0,05					4200
S00357791	667864	670197	41,46	11,83	0,53	38,22	0,68	0,40	6,62	0,04					1800
S00357792	667834	670199	26,11	19,38	0,71	43,87	0,78	0,14	8,90	0,04					1800
S00357793	667857	670189	2,72	1,06		4,11		13,99	4,16	0,73	3,55	0,19	0,62	0,21	7700

Table VI : CanaMex selected XRF analytical results from August 2021 samples

LOI : loss-on-ignition = water content

Coarse grain concentrate

The high mean values in silica, alumina, LOI (loss-on-ignition) and manganese in coarse grain concentrate reflects the content of detrital quartz, iron hydroxide, manganese oxide and alumina produced by the alteration during lateritic processes like transformation of plagioclase and feldspar into kaolinite and clay, iron and manganese migration and enrichment in upper horizons of the profile and the absorption of water in iron oxides producing various hydroxide (goethite) and limonite (see Figure 25 and above).

Fine grain concentrate

The high Ti (titanium) and Zr (zirconium) values in fine grain concentrate reflect the presence of heavy minerals like ilmenite, possibly rutile (TiO2), struverite, a tantalorutile (Ti,Ta,Nb,Fe)O2, zircon and / or baddeleyite (ZrO2) (see Cramer et al., 2011 and

Linnen, Cuney, 2005, Schulz et al., 2017 and Jones et al., 2017 for details on Ta, Nb, Zr, Hf behavior in mineral geochemistry). Limited amounts of Sn also suggest presence of cassiterite. The fine concentrate also contains values in niobium (Nb) and hafnium (Hf). A study describes Zr and Hf present in columbo-tantalite and in wodginite (Mn(Sn,Ta)(Ta, Nb)2O8 found in various Archean and Proterozoic pegmatites of the Canadian Shield (Cerny at al., 2007). Zirconium (Zr) is said to be concentrated in pegmatitic or greisen phases of Proterozoic anorogenic granites in northwest Brazil ((Macambira et al., 1987).

On the Minastyc property, the samples composed of fine concentrate are located in the vicinity of the inselbergs and may reflect mineralization originating from aplitic, pegmatitic or greisen phases of the Parguaza anorogenic granite, already known to contain tin-related mineralization east of Rio Orinoco in Venezuela. Tin-related mineralization are also found in alluvial deposit further south in Colombia, along the Rio Guaviare and Rio Inirida both NE-trending tributaries of the Rio Orinoco (see Franco Victoria et al., 2021 and section 7.3 and 8 above).

Area 50 analytical results

Large samples were taken from trenches of area 50, Figure 33 and 43. Two samples weighting 1.64 teach where taken 35 m apart with the following UTM z 19 coordinates : A 670189E/667857N, B 670196E/667894N.

Washing and sieving produced 7.7 kg of heavy mineral and particles with a 425 : 1 concentration ratio. Representative 736 g of fine and 706 g of coarse particles (357793A and B) were sent for analysis at Alpha1 lab. A blended sample 357793-AUX 26213 was sent for REE and 357793-AUX 26248 was sent for Au, Ag, Pt and Pd analysis. For comparison only, two other samples presented below, 357795, coarse fraction and 337796, same fraction pulverized, were collected from the same location **area 50**, but during a previous exploration program. Although the sample was not taken by the project QP, Joel Scodnick verified that the material was well sampled, preserved and could be utilize in confidence. Assay certificates are located in Appendix IV.

Area 50 is the only location where samples show high P2O5 and ThO2 values along with high Ce, Nd, La, Pr and Sm values. The chemistry is compatible with the composition of monazite (Ce,Nd,La,Th)PO4, although phosphorus is depleted and only half normal monazite value. Table VII compares the stoichiometry of monazite from alluvial heavy mineral concentrate in Location 4 taken by Franco Victoria et al., (2021) along the Rio Inirida in the Guainia Department in Colombia, 200 km south of the property. Minastyc monazite shows higher Ce and lower La and Y values. The table also compares the chemistry of eluvial and magmatic monazite collected from pegmatite in Brazil (Overstreet, 1967). On the Minastyc property, low P, higher values for Fe, Mn and LOI and the presence of Sn, Nb and Ta suggest that iron hydroxide, columbotantalite and cassiterite are present in small quantities in the concentrate. Low phosphorous may also result from the high mobility in the leaching process during alteration. For its part, constant Th is attributed to a relative immobility during alteration.

El	357793	357793	357793A	357793B	357795	357796	Loc4	Eluv	pegm
		AUX						man Broz	Broz
CiO 2	AUX 20123	20240	2.0	2	2.0	2 7	1 21		1 22
510Z	2,72	2,39	2,9	2	2,9	2,7	1,21	1,09	1,32
AIZUS	1,00	0,05	1,1	0,8	1,5	1,1		0,49	0,66
Fe2O3	4,11	3,38	4,4	3,7	1,2	4,8		2,07	0,48
CaO	0,4	0,27	0,3	0,4	0,4	0,4	1,21	0,02	0,02
P2O5	13,98	15,12	13,4	14,6	14	14	26,52	25,75	25,43
LOI	4,16	ļ	1,4	1,2	1,5	1,5		0,4	0,58
ZrO2	0,73	0,78	0,7	0,4	0,5	0,1		tr	
MnO	3,55							0,29	0,03
PbO	0,41	0,58	0,5	0,4	0,5	0,6	0,54	0,16	0,16
SnO2	0,19	0,19	0,2		0,2	0,3		0,33	
Nb2O5	0,62	0,73	0,6		1,2	1		4,72	
Ta2O5	0,72	0,72	0,7	0,1	1,3	1,3		0,64	
HfO2	0,21	0,18	0,3	0,1	0,3	0,3			
ThO2	7,27	7,97	7,4	7,9	7,1	7	8,42	6,22	8,88
UO2	0,18	0,23	0,2	0,2	0,2	0,2	0,22	tr	0,07
CeO2	38,66	43,86	40,74	43,93	36,75	38,82	30,1	38,08	32,6
Nd2O3	7,27	8,24	7,84	8,44	7,38	8,39	11,22		
La2O3	6,91	7,95	8,56	7,77	9,37	6,8	10,95	9,53	28,77
Pr2O3	2,06	2,33	2,13	2,25	1,82	2,74	3,1		
Sm2O3	2,2	2,12	2,12	2,37	2,08	2,59	2,78		
Eu2O3									
Gd2O3	1,1	0,91	2,46	2,67	2,17	2,39	1,23	tr	
Dy2O3	0,43	0,65	0,91	0,49	0,7	0,96	0,57		
Y2O3	0,04	0,05	0,1	0,07	0,12	1,03	1,42	10,15	0,98
Yb2O3	0,95	0,44	0,61	0,22	0,38	0,4			
Er2O3	0,01	0,01	0,2	0,11	0,25	0,09			
Total	99,94	99,95	99,77	100,12	99,62	99,51	99,47	99,94	100,2

Table VII : Geochemistry of area 50 samples & monazites

Tr : trace

Au, Ag, Pt & Pd analytical results

Number of samples were analyzed for precious metal by XRF at Apha1 lab. Results show up to 63 ppm Au and 53 ppm Pt in the various concentrates, Table VIII. The presence of platinoids and Au-Ag is documented in placers of Russia (Ural), Brazil, Alaska, Guaiana and Sierra Leone among others. Russian placers were the main producers of platinum in the 19th century, replaced by Sudbury and the Bushweld in the mid 20th century.

In placers, platinoids appear as rounded, dendritic, botryoidal or euhedral (polyhedra, pyritohedra) fine nuggets. Most of the platinum is present as native alloys like PtFe(NiIrPdCu), PtFeCu, PtPd or PtHg, locally associated with Te, Bi, Sn or S. Other platinoids may be present as alloys (OsIrRu) or sulfides (OsRu)S2. Gold and silver may be present as electrum in platinoid nuggets. Gold can also be found as platinum or palladium alloy (PtAu, PdAu).

The origin of detrital platinoid alloys is related to the presence in the various upstream basements of serpentinite or olivine or pyroxene-rich ultramafic units (ophiolites, olivine gabbros, dunites, komatiites, etc.).

Table VIII : Geochemistry of Au, Ag, Pt, Pd samples

Lab Id	E z19	N z19	InWt	Conc	AI2O3	SiO2	P2O5	К2О	TiO2	Fe2O3	ZrO2	LOI	Au	Pt	Ag	Pd
			g		%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm
S00357755	669435	668622	5200	125	2,29	86,1	0,05	0,08	0,19	9,5	0,09	1,67	15	38	-	-
S00357774	669463	668635	1200	31	8,17	80,9	0,08	0,09	0,23	10,5	0,05		-	-	-	-
S00357775	669435	668622	3560	79	17,6	61,3	0,09	0,07	0,63	15	0,26	5,04	13	53	-	-
S00357776	669435	668622	5100	81	4,22	76,9	0,14	0,07	0,23	15,1	0,13	3,14	13	38	-	-
S00357777	669420	668616	4655	126	4,31	77,2	0,08		0,93	13,7	0,36	3,37	23	20	19	19
S00357778	669430	668655	6730	522	16,8	53,9	0,1	0,07	0,3	22,2	0,12	6,59	46	31	-	-
S00357779	669423	668682	7250	388	2,21	82,9	0,09	0,07	0,19	11,7	0,08	2,67	63	15	-	-
S00357780	669423	668682	5110	78	18	55,2	0,12	0,09	0,89	21,8	0,3	3,37	56	25	-	-
S00357781	669466	668738	6650	116	5,3	73,2	0,17	0,19	0,28	17,4	0,01	3,37	19	-	-	-
S00357782	669747	668153	2044	158	17,3	70,5	0,1	3,68	0,93	6,9	0,23	-	32	-	32	-
S00357783	669692	668142	2440	106	21	64,1	0,12	7,69	0,28	2,82	0,05		-	-	-	-
S00357784	669605	668146	895	14	8,91	87,5	0,02	0,05	0,66	2,47	0,28		-	-	-	-
S00357785	669646	668096	1990	114	3,92	91,7	0,05		0,44	3,7	0,12		2	-	-	-
S00357786	669689	668074	830	13	9,25	83	0,12	0,09	0,5	6,9	0,13		-	-	-	-
S00357787	669499	667585	1380	99	21,6	64,3	0,19	0,56	0,65	6,67	0,14	5,49	63	15	-	-
S00357789	669776	667155	2505	134	9,03	77	0,06	0,95	0,34	9,85	0,02	2,5	11	-	-	-
S00357790	670030	667663	3585	112	7,64	69	0,09	0,45	0,4	18,8	0,04	3,52	-	-	-	-
S00357791	670197	667864	1105	55	8,82	61,1	0,22	0,3	0,36	24,5	0,05	4,55	15	-	-	-
S00357792	670199	667834	1250	74	15,6	34,8	0,17	0,82	0,71	40,2	0,06	7,43	13	-	-	-
S00357793	670189	667857	2315	31	0 <i>,</i> 85	2,39	15,1			3,38	0,78	<u>.</u>	9	-	-	-

Table VIII give the location and concentration ration of the various samples analyzed for Au, Ag, Pt, Pd. It shows the same distribution on the Minastyc property, Figure 33 and 43. The concentration factor has an influence on the sensibility of the XRF procedure, the more one concentrates, the more one is susceptible to find highly diluted precious metals. The results also show the presence of detrital quartz, kaolinite and iron hydroxides in most of the samples with exception of 357793 that has been discussed above. Detrital platinoid alloys are related to ultramafic rocks, detrital gold and silver are ubiquitous in most Quaternary alluvial deposits found in Precambrian basements. The distribution and the importance of precious metals like Pt and Au in the economic potential of the Minastyc property should be clarified during the next exploration program.

Spectral analysis vs REE & Sn content

Spectral analysis was used to create geobotany maps of the Minastyc property and surrounding areas, using various filters and algorithms (Popiela, 2021). The following map show the variation of spectral responses on the Minastyc property and the location of the 2021 analytical results, Figure 44. The various spectral responses are related to variations at surface like concentration and variety of grass, plants, scrubs and trees, gallery forest, percentage of sand, alteration and concentration of iron oxides or hydroxides at surface or altered granite surface. Figure 45 shows a definite signature for gallery forest along the various streams and around the inselbergs, a false blue to violet response of the granite surfaces and white sands, a red response at the limit of forest and grass related to water content, etc.

Area 50 shows RE oxides near 60% in the concentrates of sample 357793 possibly related to a spectral response. To the SE, samples contain tin content up to 1.14% with no specific spectral signature.

Given that the spectral responses have multi factorial origins, Minastyc should be verified in the field with detailed control points, vegetation and soil description, geochemistry and radiometric readings, etc.

Figure 44 : Spectral geobotany map of Minastyc with 2021 analytical results. See also Figure 43. After Popiela (2021).

10. Drilling

No drilling was described in this report.

11. Sample Preparation, Analyses and Security

The following describes the procedures applied during the exploration programs detailed in sections above.

11.1 Sample Preparation and Field Quality Control Measures

The co-author of this report Joel Scodnick (JS), P. Geo. and QP, personally selected all of the samples as provided in Table V, VI and VII. He has reviewed all of the assay certificates provided in Appendix IV, the sample descriptions and sample database. All of the procedures for sample collection were carried out by trained personnel according to industry standards.

On the Minastyc property, samples were taken directly from vertical channels in pits and trenches or taken from stockpiles near the pits where water prevented access.

Most of the gravel samples were dried and sieved by experienced personnel working at artisanal mining operations. The samples were then separated into two fractions, a

coarse concentrate and a fine concentrate of heavy minerals. The bulk of the sample being most lighter material such as quartz and feldspars were discarded, however, all of the original weights of each sample were recorded as well as each fraction of coarse and fine material so that a concentration ratio could be determined. No field standards or blanks were used in the programs, however, the laboratory which did the bulk of the analyses have their own reliable quality control procedures. A visit to the lab in Bogota was performed and a very detailed tour was done. The database includes a description of the samples, sample weight, sample type, GPS coordinates, area selected, and analyses, as well as concentration ratios.

11.2 Assaying and Analytical Procedures

Rock chip and gravel samples were collected and delivered personally to Alpha1 laboratory in Bogota, Colombia where the bulk of the samples will be submitted to XRF analyses. One sample, S00357793, was taken by JS and delivered personally to Impact Global Solutions (IGS) in Denton, Qc, Canada for further verification, recovery and metallurgical tests. Pulps and samples were all processed at Alpha1 as well as analyses. Some pulps were also sent to Coalia laboratory in Thetford Mines, Quebec for additional metallurgical and mineralogical work.

11.3 Analyses of Gravel and Rock Samples

Sample preparation was carried out by crushing more than 70% of the sample to -10 mesh (2 mm grain size), then using a riffle splitter taking a 1 kg split and pulverizing this sub-sample to -200 mesh (74 microns grain size). A portable XRF was used to determine the chemistry of the sample by measuring the florescent or secondary X-ray emitted from the sample when submitted to a primary X-Ray source.

11.4 Security of the Samples

All of the samples were zip tied onsite at the property, transported by boat to Puerto Carreño and taxied to a secure storage by JS. The facility has a main gate under lock and a security guard living onsite. Once in the secure room, JS took pictures of the samples to make sure that they were all exactly in the same position. Shortly thereafter all of the samples were put into 501 plastic containers to be shipped to Bogota via air transport. The samples were picked at the airport and delivered personally to Alpha1 laboratory in Bogota. A secure chain of custody was applied all along the process.

12. Data Verification

The scale of sampling on the Minastyc property is limited and no reference material was introduced in the sample batch. Data verification is limited to the accuracy of the analytical results when compared to the certificates provided by Alpha1-Servicios Analiticos S.A.S. See Appendix IV.

All of the onsite work was under the supervision of Joel Scodnick, the Qualified Person (QP). It is of the opinion of the QP that all of the work performed was within industry standards and can be fully relied upon. It is also the QP's opinion that adequate cross-section and representative samples were collected and in adequate number.

13. Mineral Processing and Metallurgical Testing

No mineral processing nor metallurgical testing are presented in this report.

For information, it should be noted that AUXICO initiated a project with Central America Nickel (CAN) to develop a metallurgical process using specific geochemistry and ultrasound (UAEx) technology. The ongoing project aims at reducing the cycle leaching times, obtain above 80% of recoveries of most of REE and other critical metals, reduce by two order of magnitude the radiometric readings related to the presence of thorium and to reduce the operating and capital costs.

AUXICO is also involved with IGS Impact Global Solutions laboratories in REE extraction process. It involves acid bake testing and dissolution of REE sulfates and selective precipitation of Th and U from monazite ((REE, Th, U)PO4) concentrates. Results are positive but preliminary. It demonstrates that 99.9% of the radioactive thorium (Th) can be precipitated and therefore complies to the industry norm of transportation. Further research will establish if the process is applicable to pilot plant scale. Please refer to AUXICO July 30, 2021 press release.

14. Mineral Resource Estimate

No mineral resource estimate was carried out in this report, nor was any mineral resource estimate produced for the Minastyc Property.

23. Adjacent Properties

To the knowledge of the authors there is no adjacent property to Minastyc.

24. Other Relevant Data and Information

Relevant information and data are listed and detailed below. It comprises descriptions and summaries of

critical metals/minerals present on Minastyc,

world REE production and environment liabilities,

summary of AMCO exploration report on the Minastyc property,

the Vichada Meteorite Impact and

the Agualinda Property.

24.1 Critical minerals / metals

Sn, Ta, Nb, Zr, Hf, REE and other critical metals were found on the Minastyc property. In February 2022, the USGS listed the first 50 most important metals/elements with their use in the world economy. See the web address below. The following Table shows the USGS list and the presence of the various critical metals / minerals on Minastyc.

<u>https://www.usgs.gov/news/national-news-release/us-geological-survey-releases-2022-list-critical-minerals</u>

El / Min	Industrial use	on Minastyc
Aluminum	conductors, construction & electronics	
Antimony	lead-acid batteries & flame retardants	
Arsenic	semi-conductors	
Barite	hydrocarbon production	
	alloying agent in aerospace & defense	
Beryllium	industries	
Bismuth	medical & atomic research	
	catalytic converters, ceramics, glass,	
Cerium	metallurgy & polishing compounds	Χ
Cesium	research & development	
Chromium	stainless steel & other alloys	
Cobalt	rechargeable batteries & superalloys	
Dysprosium	permanent magnets, data storage & lasers	Х
	fibre optics, optical amplifiers, lasers & glass	
Erbium	colorants	Х
Europium	phosphors & nuclear control rods	
-	aluminum cement, steel gasoline & fluorine	
rıuorspar	cnemicais	
Cadalinium	medical imaging, permanent magnets &	v
Callium	Steeliidkiig	X
Gailluitt	files antice & right vision applications	
Germanium		
Graphite	Tubricants, batteries & ruei celis	
Hafnium	nuclear control rods, alloys & high-T ceramics	Х
	permanent magnets, nuclear control rods &	
Holmium	lasers	
Indium	liquid crystal display screens	
	coating of electrochemical anodes & chemical	
Iridium	catalyst	
	catalyst ceramics, glass polishing, metallurgy	
Lanthanum	& batteries	X
Lithium	rechargeable batteries	
Lutatium	scintillators for medical imaging & cancer	
Lutetium		
Magnesium	alloys & reducing metals	
Manganese	steelmaking & batteries	
Needuratura	permanent magnets, rubber catalysts,	v
Neodymium		Χ
Nickei	stalliess steel, superalloys & Datteries	v
Dalladium	steel & superalloys	
Pallauluili	catalytic converters & catalyst agent	^
Plauliulii		^
Pracoodymium	allove coramice & colorante	v
Flaseouyilliulli	catalytic convertors, electrical components &	^
Phodium	catalyst	
Ruhidium	research & development in electronics	
Kubiululli	catalysts oloctrical contacts & chin resistors	
Ruthenium	in computers	
Ramentum	nermanent magnets, absorber in nuclear	
Samarium	reactors & cancer treatments	x
Scandium	allovs ceramics & fuel cells	~ ~ ~
Tantalum	electronic components & superallovs	X
Tellurium	solar cells, thermoelectric devices & alloys	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	permanent magnets, fibre ontics lasers &	
Terbium	solid-state devices	
Thulium	various metal allovs & lasers	
Tin	protective coatings & allovs	χ
Titanium	white pigment & metal allovs	X

Table IX : Presence of critical metals on Minastyc

Tungsten	wear-resistant metals	
Vanadium	alloying agent for iron & steel	
Ytterbium	catalysts, scintillometers, lasers & metallurgy	Х
	ceramic, catalysts, lasers, metallurgy &	
Yttrium	phosphors	Х
Zinc	primarily metallurgy & galvanized steel	
Zirconium	high-T ceramics & corrosion-resistant alloys	Х

24.2 World REE 2020 production

Until 2010, rare earth elements (REE) have been produced mainly by China. In 1985, China created incentives for domestic production. In 1998, Mountain Pass mine, the only US producer ceased large-scale operations. In 2002 Mountain Pass stopped operations due to environment issues and increased Chinese competition. In 2010,

China imposed restrictions exports, on provoking higher prices and easing exploration in other countries. In 2010, China produced 92% of the world REE, in 2020 it represents 58%. Figure 45 gives the past production and future tendencies and Table Х the world production by country and reserves.

Figure 45 : World REE production 1985-2020.

Table X	1	2020	World	REE	production	and	reserves

Country	2020 Production t	Reserves t	% of Word Reserves
China	140,000	44,000,000	38
Vietnam	1,000	22,000,000	19
Brazil	1,000	21,000,000	18.1
Russia	2700	12,000,000	10.4
India	3,000	6,900,000	6
Australia	17,000	4,100,000	3.5
U.S.	38,000	1,500,000	1.3
Greenland	-	1,500,000	1.3
Tanzania	-	890,000	0.8
Canada	-	830,000	0.7
South Africa	-	790,000	0.7
Other countries	100	310,000	0.3

Burma	30,000	-	-
Madagascar	8,000	-	-
Thailand	2,000	-	-
Burundi	500	-	-
Total	243,300	115,820,000	100

t : imperial ton source : USGS Mineral Commodity Summaries

24.3 Environment Liabilities (continuation of section 4.4)

ENVIRONMENTAL ASPECTS

Protection of Water Rounds

Starting from the definition of Water Round which includes the belt parallel to the maximum tidal line or to that of the permanent channel of rivers and lakes, up to 30 m wide, it is emphasized that for no reason the phases of the project or the areas arranged for the construction of locations and / or benefit plant, intervene or invade these isolation zones corresponding to the water currents present in the area of influence of the mining project (Ministry of Environment and Sustainable Development, 2017).

Domestic & industrial wastewater

The treatment and disposal of domestic and industrial wastewater for the exploitation areas contemplate the following measures which will be implemented once the activities begin:

1. Water treatment for domestic and industrial consumption;

2. Update, maintain and control the water flow capacity systems used in the washing process, which includes the wastewater of the beneficiation plant, in order to comply with article 73, Decree 1594 of 1984 and Law 373 of 1997 on saving and efficient use of water or that environmental legislation that replaces or modifies it;

3. Use the water strictly necessary in the different stages of operation of the industrial process. That is why a closed water circulation system is projected, in order to use smaller amounts;

4. Implement water reduction systems in urinals and sinks.

Disposal of domestic wastewater

Structure and implement a schedule of inspection activities and, if necessary, update the project's domestic wastewater management system, in such a way that they comply with the current environmental standard for domestic wastewater discharges.

1. Implement systems and/or mechanisms that allow effective monitoring of domestic wastewater treatment systems;

2. Carry out periodic monitoring of the discharges of domestic wastewater generated for the verification of compliance with current environmental standards;

3. Avoid increasing the contamination of existing water sources (possible recipients of domestic wastewater discharges) and promote the improvement of the quality conditions of these water sources.

Disposal of industrial wastewater

1. Monitor and maintain the efficiency in the sedimentation systems of the suspended solids of the sandblaster and / or sedimentation pool;

2. Inspect and perform periodic maintenance to the pipes, equipment and elements associated with the process of conduction of industrial waters (of the process of benefit and areas of exploitation);

3. Periodically monitor the industrial discharges generated by the project;

4. Minimize the generation of suspended solids by implementing irrigation systems on the roads and vehicle cover;

5. Implement a system of management and treatment of wastewater resulting from the washing of the ore, in order to guarantee a closed circuit of conduction to a single sedimentation system. Likewise, the sedimentation time of the waters must be the minimum necessary to remove the suspended solids, in order to comply with the environmental standard at the dumping site;

6. Form drainage channels inside the internal routes of circulation of the FM, with cant towards the slope of 1% so that the runoff waters drain into the perimeter channels to be led to the drainage and treatment circuit of the project.

Handling, Treatment, Transport & Final Disposal of Domestic & Industrial Solid Waste

The handling, treatment, transport and final disposal of solid, domestic and industrial waste for the project includes the following measures:

1. Adopt guidelines for a rational use of products and promote the program for separation at source of waste; managing with companies in the sector endorsed by the municipality, the delivery of the same.

2. Manage the delivery of hazardous waste with authorized companies that have the corresponding permits and licenses. In particular, the delivery to an authorized manager of 100% of the hazardous waste generated.

3. Implement and maintain ecological points with colored containers labeled that allow classification in the generation source. Emphasis will be placed on the delivery of 100% of recyclable waste for use.

4. Develop training and sensitization to staff in order to reduce the generation of solid waste and reuse those likely to be.

Air Emissions Control & Noise Management

Control measures are made up of specific activities and procedures to prevent or mitigate environmental impacts from atmospheric emissions and noises.

Control of atmospheric emissions

The objective of these measures is to avoid air pollution generated by the mobilization of machinery and equipment. The control of atmospheric emissions includes the development of the following activities:

1. The goal of air emissions control is to comply with the Colombian regulations for emissions established in Resolution 1377 of 2015 and/or that which modifies and/or replaces it.

2. Comply with Colombian regulations for air quality and / or that which modifies and / or replaces it.

3. All vehicles must have gas emission certificates in accordance with current standards.

4. Vehicle traffic in work areas should be subject to speed limits to ensure not only safety, but also to prevent the entrainment of particles. For all types of vehicles, the limit allowed in internal accesses is 20 km / h. In the access roads to the area to be recovered, the restrictions established by the competent authorities must be taken into account.

5. Information signs should be installed in vehicular traffic areas to indicate the permitted speeds.

6. The internal accesses and recovery areas must be moistened to avoid the dragging of particles by the action of the wind or the movement of vehicles and machinery.

7. Drivers should participate in an introductory talk on safety regulations, authorized roads, schedules and speed limits.

The time of application of these measures will be throughout the mining cycle of the project (exploitation, profit and transformation, closure and recovery).

Noise management

The goal is to avoid inconvenience in neighboring communities. Noise management requires considering the following actions:

1. Comply with environmental noise levels in accordance with Resolution 627 of 2006 and / or current regulations.

2. Perform semi-annually the respective measurements of sound pressure levels.

3. Follow up on complaints from communities in the area of influence of the project that they establish when they are affected by noise.

4. Perform periodic maintenance of all machinery, equipment and vehicles of the project.

5. Vehicles and machinery must ensure the proper functioning of silencers to control the noise levels emitted.

6. The use of bugles or whistles that emit high levels of noise should be prohibited.

The time of application of this measure will be throughout the mining cycle of the project (exploitation, benefit and transformation, closure and recovery).

Management & measures for runoff water

The efficient management where required of runoff and subsurface waters is one of the most reliable measures to guarantee the stability of cuts made in the extraction areas. When a balance is achieved between the flow velocities and its dragging capacity, the conditions conducive to the growth of vegetation are generated, providing an additional measure of erosion control.

Management measures for runoff water

The measures for the management and disposal of runoff water in the project areas are :

1. A collector channel must be designed so that all the waters that may occur on the starting front can be captured, thus, the waters received by the ditches of the internal track.

 The ditches must be placed on the inside of each berm and built in such a way that they resist the erosion of the solids that the water drags and facilitate the cleaning work.
 The structure of the sandblaster or sedimentation pool should be cleaned periodically and more frequently during rainy seasons, therefore, they should be located in places that facilitate access and transport of sedimented solids.

Some recommendations for designing ditches, channels and sandblasters are presented.

Design of channels& ditches

Since the drainage works required to collect and conduct runoff water reaching the areas of mining excavations are relatively small.

The most commonly used sections in the canals and ditches are trapezoidal and triangular, Figure 46. In each case, the expressions for the hydraulic radius, R, are used, which are indicated in the Colebrooke-White and Manning equations.

Figure 46 : Typical sections of channels and ditches.

Design of sandblasters

Sandblasting tanks are built for the purpose of retaining solids that runoff water can carry away before it is delivered to the sewer system. As the recovery processes of the extraction area progress, these structures will lose importance, and the areas will be protected by vegetation.

The hydraulic design of the sandblasting tanks is carried out for a flow rate equal to 75% of the estimated rainfall of the return period of 10 years.

The large particles carried by the water are deposited at the bottom of the tank, where the speed of the water decreases and loses its greatest transport capacity. The sandblaster is composed of four zones: inlet, sedimentation, sludge and outlet, as shown in Figure 47.

Figure 47 : Hydraulics of sandblasting tanks

The entrance area of the sandblaster serves to reduce the speed of the water and return excess water. It consists of a side landfill, dissipation chamber and perforated partition. The dissipation chamber slows the rate of entry of water into the sedimentation zone, while the perforated septum distributes it throughout the section.

The sedimentation tank must have dimensions such that a theoretical retention time is met, so that the larger solids are deposited at the bottom, which is the sludge zone. The exit zone is made up of a landfill that connects to a channel or pipeline.

MINING ENVIRONMENTAL TECHNICAL GUIDES

In accordance with the provisions of the Ministry of Mines and Energy, the miningenvironmental technical guides that will be used in the different environmental components affected, and in the development of the construction, assembly and exploitation works of this project, giving way to the planning, execution and monitoring of the environmental activities that will be carried out according to the mining activity.

It is highlighted that within the Environmental Management Plan contained in the Environmental Impact Study that is delivered to CORPORINOQUIA, a detailed description of the control measures is made, with their respective files to be applied, in addition to the effects to be mitigated, causes of them, time and time of execution, costs of the works, follow-up, control and monitoring and responsible for the auditing

The following are the specific management sheets to be taken into account in the development of the project:

Water Component

CME 07-03 Rainwater management: Perimeter ditches built on land are proposed for the treatment of the same, preventing runoff waters from causing erosion in the areas destined as patios for the disposal of material of interest.

CME 07-04 Management of domestic wastewater: It will be used to treat domestic water from the camps located in the area, through the implementation of septic tanks.

CME 07-07 Management of water bodies: Although no type of intervention will be carried out in channels and / or water rounds, the protection measures that are convenient when the exploitation process is in nearby areas will be advanced, in order to avoid at all times any type of contamination in the water resource.

Air Component

CME 07-09 Noise Management: It is developed to mitigate negative impacts on environmental factors due to the use of machinery and transport vehicles.

Soil Component

CME 07-10 Fuel Management: It is developed in order to establish the loading, transport and handling of fuels used for machinery and vehicles, in order to avoid spills that may generate environmental damage.

CME 07-11 Soil management: These activities are intended to give adequate management to the soil that may be found covering the areas to be exploited and adapted for collection yards and other infrastructure, so that it can be reused in the subsequent process of morphological and landscape restoration of the areas affected by said infrastructure required for the development of the project.

CME 07-15 Management of Sterile and Debris: The objective is to give the correct handling to the sterile material resulting from the same exploitation fronts, which as explained in previous chapters, will be deposited in the areas already exploited for the morphological restoration of the land.

CME 07-16 Track Management: It is proposed to maintain the access roads to the operating fronts and the facilities, mainly developing ditches for the correct treatment of rainwater.

CME 07-17 Solid waste management: It is about giving proper management to garbage through the strategic location of baskets in the operation sites and the recycling of them to be delivered to the municipality's cleaning service.

CME 07-18 Management of fauna and flora: This includes the proper management of existing fauna and flora communities, conserving forested areas. Likewise, reforestation of a sector and maintenance of the existing flora.

CME 07-24 Landscape management: Includes reforestation, restoration, maintenance and conservation of existing forest areas, enrichment with herbaceous species of areas affected by mining and the installation of live fences.

CME 07-25 Plan de Recuperación: Conforma el plan de obras de recuperación morfológica, paisajística y forestal establecido en el capítulo 7.

24.4 AMCO Report

Following the August 2021 report (AMCOa, 2021), a voluminous report was produced by AMCO Consultores in September 2021 on the Minastyc property for AUXICO Resources (AMCOb, 2021). The report entitled "Estudio de impacto ambiental (EIA) para el tramite de licencia ambiental temporal de la solicitud de formalizacion minera LFH-14431X, en el municipio de Puerto Carreño" was partly translated by the authors of the present report. It comprises 8 chapters.

1- Objectives

2- Description of the mineral activities

3- Characterization of the area of influence of the mineral activities

4- Socio-economic environment

5- Environment permit and authorization of natural resource exploitation, for the mineral activities

6- Environment evaluation

7- Management of the environment of the mineral activities

8- Dismantlement and abandonment of the mining activities

The objectives of the report are as follow.

- Description of the technical characteristics of the mineral exploitation of permit LFH-14431X, Minastyc project, in order to get a temporary environmental permit.

- Describes the area of environment influence and describes the abiotic, biotic and socio-economic environment.

- Identify, quantify, valorize and describe the possible impacts at present (scenario without project) and the one that could arise following the onset of the project (scenario with project).

- Request and obtain permit for exploitation of natural resources necessary and essential for the execution of the project as well as atmospheric emissions and impacts on forestry.

- From the sensitivity of the abiotic, biotic and socio-economic milieu, determine the zoning of environment management resulting in identification of exclusion zones, and intervention with restrictions of the mineral exploitation.

- Formulate different programs, environment management activities and social needs to prevent and mitigate the negative environment impacts resulting from the mineral exploitation and associated activities and identify the positive impacts of the mining exploitation.

- Insure the fulfillment of the environment management plan (EMP) using the program follow-up and monitoring of the abiotic, biotic and socio-economic milieu.

The report contains valuable information on topography, photo-mosaic surveying, hydrography and drainage and water quality. It also contains a thorough description of flora, fauna, biotic milieu, socio-economic status and land occupation of the people living in the Minastyc project area. The report contains a detailed mining plan and engineering chronograms, etc. The geological section of the report is not detailed and non compliant to 43-101 guidelines.

A more recent Documento_PTO entitled Programa de Trabajos y Obra de Explotacion para la Legalizacion de Mineria de Hecho LFH-14431X- Proyecto

Minero Minastyc was produced by AMCO in February 2022. It is the same document as the one described above with additions to satisfy the NMA and Ministerio de Minas y Energia de Colombia requirements (AMCO, 2022).

24.5 Vichada Meteorite Impact

Vichada Meteorite Impact

A probable meteoritic impact of importance discovered in 2004, is located 248 km SW of Puerto Carreño. It forms a large curvature, along the Rio Vichada, 150 km west

of the Rio Orinoco. The circular structure is 50 km wide and at least 30 million years old. It has affected the Neoproterozoic granitic basement and the Cenozoic cover and possibly the Ta-Nb-REE Parguaza granite mineralization, like in the Sudbury case. Simulation by Hernandez et al. (2018) showed up to 1 m of ejecta thickness in the Minastyc property area, Figure 48. Much work still remain to be done to assess the likelihood of the impact and its influence on the basement mineralization.

Figure 48 : Ejecta thickness simulation for the Vichada impact located 248 km SW of the Minastyc property immediately south of Puerto Carreño, to the NE of the map.

24.6 Agualinda Property

On December 8, 2021, AUXICO announced the acquisition of the surface rights covering 1293 ha of a land titled Agualinda, also referred to as Minastyc South, located south of Puerto Carreño and adjoining the Minastyc property. The only preliminary exploration work done in the surrounding areas is a satellite imagery study carried out by Popiela (2021). Target priority maps were produced using spectral analysis and radar within the Minastyc South perimeter. Figure 49 shows an approximate position of Minastyc South adjacent or near the Minastyc property since AUXICO did not published the exact coordinates of Agualinda.

If, in the future a resource is completed on Minastyc, and exploration work conducted on Agualinda would indicate a sufficient amount of material to be exploited and a resource established, then if a processing facility were built on Minastyc, it would be able to process material from Agualinda as well since it is just adjacent to the south. There is already a road going through Agualinda and north onto Minastyc, so that the transportation of material from Agualinda to Minastyc would be quite simple and at a very low cost.

Figure 49 : Approximate location of the AUXICO Minastyc South property.

25. Conclusion

The Minastyc property covers 188,74 ha. and is located on the west side of the Rio Orinoco south of Puerto Carreño in Colombia. Exploration works were carried out in 2020 and 2021 by AMCO Consultores and CanaMex. It comprises topographic and photo-mosaic surveys, induced polarization (IP) and seismic refraction line surveys, pit and trench digging, geology, sampling, and geochemical analyses. The satellite imagery analyses were carried out by JAPOSAT Satellite Mapping.

The Minastyc alluvial deposits are overlying the Parguaza rapakivi granite showing as inselbergs on the property. From bottom to top the stratigraphy shows, granite, granite saprock or saprolite (50 cm to 1 m), iron concretion (ferricrete) (50 cm to 1 m), sediment 1 and 2, conglomeratic oxidized sands with quartz pebbles, heavy minerals and clays (2 m +), sediment 3, oxidized layered sand with kaolinite layers (1 m) and sediment 4 gritty oxidized sands (1 m).

The various alluvial horizons were described and sampled along vertical channels and from adjacent stockpiles. A heavy bulk sample was taken in the centre of the property. All samples were analyzed using XRF at Alpha1 lab in Bogota.

The AMCO results are only qualitative and suggest the presence of columbotantalite, cassiterite, rutile and possibly ilmenite or pyrochlore in the heavy mineral concentrates.

The analytical results from the first AUXICO exploration program in August 2021 show a relation between the mean values of specific elements and the size of the concentrate. The fine grained particles show high Ti and Zr possibly related to the presence of heavy minerals like ilmenite, possibly rutile or tantalo-rutile and zircon. Sn, Nb and Hf values may be related to cassiterite, columbo-tantalite or wodginite. The coarse concentrate shows high Al, Si, Mn and LOI (loss-on-ignition) related to processes like feldspar alteration, iron and manganese migration and enrichment in upper horizons of the alteration zones and absorption of water by the iron oxides. Area 50 bulk sample shows high concentrations of P2O5, ThO2 and REE oxides compatible with the presence of monazite. Fe, Sn, Nb and Ta values suggest that iron hydroxide, columbo-tantalite and cassiterite are present in small quantities in the concentrate.

The analytical results from the second AUXICO sampling program in December 2021 are pending.

The exploration on the Minastyc property shows that the lower horizons immediately above the granite saprock or saprolite show heavy minerals containing cassiterite, ilmenite and columbo-tantalite possibly originating from the pegmatitic or greisen phases of the underlying Parguaza granite. South of the property on the west side of the Rio Orinoco, Ti, Ta, Nb heavy minerals were found in the ferricrete alteration of the Parguaza granite inselbergs. Au, Ag, Pt and Pd were detected in concentrates of 20 samples distributed on the property.

Given the world market need for critical and REE metals and minerals, section 24, the presence of Ta. Nb, Ti, Sn, , Zr, REE, Au and Pt opens the exploration in Eastern Colombia not only in the alluvial deposits along the rivers but also around the granite inselberg alteration zones that extend tens of kilometers to the west.

The authors conclude that given all the results presented in this report, the alluvial deposits of the Minastyc Property show anomalous concentrations of Sn, Ti, Ta, Nb and REE, Au and Pt, and that with further detailed work, there would be opportunity of outlining a deposit of economic worth, should enough material, grade, and continuity of the alluvial's be established.

Further exploration is required to fully assess the economic potential for Sn, Ti, Ta, Nb and REE, Au and Pt of the alluvial deposits of the Rio Orinoco in Colombia.

26. Recommendations & Budget

Following the analytical results and the stratigraphic works carried out on the Minastyc property in 2020 and 2021, and based on the positive results obtained in these field seasons, it is recommended to engage in a detailed exploration program for 2022-2023. A budget of USD 797,880 is recommended as per the following table. It could be described as follow :

- An auger program should be undertaken in order to map, sample and study the stratigraphy of the entire property. A 50 or 100 m spaced and staggered row grid should be established. The holes should reach 7 to 8 m or stopped at the water table and carefully sampled every meter or according to the various sedimentary units. The distribution is proposed with related coordinates in Appendix III.

- Additional trenches may be excavated in specific areas in order to carry out detail descriptive or sampling works. Machinery could be used to get to 5 m depth or more. A detail stratigraphy of the various fertile horizons should be established and correlations done across the property.

- The granite saprolite, the iron concretion (ferricrete) and the overlying conglomeratic sediments should be mapped and sampled in detail as they seem to be the primary source of heavy minerals.

- IP gradient line (dipole-dipole) could be located parallel to the pit or trench lines, to get an IP gradient survey of the property. A ground radiometric survey of the property should be initiated in order to locate concentrations of Th-REE-bearing monazite.

- Sampling should be carried out very carefully as well as the preparation of the concentrates, with detailed mineralogical descriptions using portable XRF device, dilution factors, granulometry, etc. The acquisition of a portable concentrator should be considered as they are efficient to standardize the sampling of heavy minerals and as they are available at reasonable costs.

- Microscopic and X-ray diffraction analyses of heavy mineral concentrates should be requested to identify the various mineral phases.

- Referenced material (standards) and blanks should be intercalated every 20 samples and duplicates should be inserted every 40 samples when submitting large batches to the XRF laboratory.

- A sufficient number of samples should be sent concurrently to ALS Chemex or SGS in South America for ICP-MS analysis or else, in order to confirm the XRF results.

- Finally a remote sensing analysis is recommended using ground analytical results in order to correlate spectral and geochemical results and to expand target areas outside the sampling sites.

Budget 2022-2023

No.	Description	Unit (USD)	Days/sples	Total (USD)
1	Excavator Rental for 30 days	5000	30	150000
2	Purchase of Auger	25000	1	25000
3	Purchase of 4 x 4 vehicle	40000	1	40000
4	Purchase of All Terrain Vehicle	40000	1	40000
5	LIDAR survey	20000		20000
6	IP gradient and radiometric survey	40000		40000
7	Geological Supervision - 2 prof. geologists			150000
8	Sedimentologist			10000
9	Assays	100	500	50000
10	Metallurgical testing	2500	4	10000
11	Room & Board for 2 Geologists (Puerto Carreno)	150	60	9000
12	Travel (Flights, hotels, Meals)			10000
13	NI 43-101 Technical Resource Report			100000
Subto	otal Estimated Budget			654000
Conti	ngencies	0,15		98100
Admi	nistration	0,07		45780
Total	Estimated Budget Phase 1			797880

27. References

AMCOa, 2021 : Programa de Trabajos y Obra de Exploitacion para la Legalizacion de Minera de Hecho LFH-14431X - Proyecto Minero Minastyc; Unpublished report for AUXICO Resources by AMCO Consultores, August 2021, 147 p.

AMCOb, 2021 : Estudio de impacto ambiental (EIA) para el tramite de licencia ambiental temporal de la solicitud de formalizacion minera LFH-14431X en el minucipio de Puerto Carreño; Unpublished report for AUXICO Resources, by AMCO Consultores, September 2021, 8 chapters, 375 p.

AMCO, 2022 : Programa de Trabajos y Obra de Explotacion para la Legalizacion de Mineria de Hecho LFH-14431X - Proyecto Minero Minastyc; Unpublished report for AUXICO Resources by AMCO Consultores, February 2022, 213 p.

Barrero, D., Pardo, A., Vargas, C.A. and Martinez, J.F., 2007 : Colombian Sedimentary Basins : Nomenclature, Boundaries and Petroleum Geology, a New Proposal; Agencia Nacional de Hydrocarburos, 91 p.

Bonilla-Pérez, A., Frantz, J.C., Charão-Marques, J., Cramer, T., Franco-Victoria, J.A., Mulocher, E. and Amaya-Perea, Z., 2013 : Petrografia, Geoquimica y Geochronologia del granito de Parguaza en Colombia; Boletin de Geologia, Vol 35 No 2, p. 83-104.

Bonilla-Pérez, A., Franco Victoria, J.A., Carlos, F.J., Cramer, T. and Amaya Perea, Z., 2013a. : Tantalum and Niobium Mineralization in the NW Guiana Shield; Oral Presentation; https://studyres.com/doc/7923417/.

Cerný, P., Ercit, T.S., Smeds, S-A., Groat, L.A. and Chapman, R., 2007 : Zirconium and Hafnium in minerals of the columbite and wodginite groups from granitic pegmatites; Canadian Mineralogist Vol. 45, p. 185-202.

Cramer, T., Bonilla Perez, A., Franco Victoria, J.A., Amaya Perea, Z. and Iregui, I., 2010 : Mineralization of Tantalum and Niobium in Vichada and Guainía, Eastern part of Colombia-Acta Mineralogica-Petrographica, Abstract Series, 6.

Cramer, T., Franco, J.A., Amaya Perea, Z., Bonilla Pérez, A., Poveda, A.P. and Celada Arango C.M., 2011 : Caracterización de depósitos aluviales con manifestaciones de tantalio y niobio ("coltán") en las comunidades indígenas de Matraca y Caranacoa en el Departamento del Guainía. Contrato 021 de 2010, Ingeominas-Universidad Nacional de Colombia, Bogota, 63 p.

Franco Victoria, J.A., Cramer, T., de Oliveira Chaves, A., Horn, H.A., and Poujol, M., 2021: Geochronology of monazite related to REE, Nb-Ta and U-Th bearing minerals from Meso - Proterozoic anorogenic magmatism in the E-Colombian Amazonian Craton: links to mantle plume activity in the Columbia (Nuna) supercontinent; Journal of South American Earth Sciences, Elsevier, 2021, 109, pp.103228.

Franco, J.A., Cramer, T., Bonilla, A., Castañeda, A.J., Poujol, M. and Amaya, Z., 2021 : Mineralogia y geocronologia, de rutilo-(Nb,Ta) relacionado a casiterita y columbita-tantalita provenientes de rocas Mesoproterozoicas del Craton Amazonico cerca de Cachicamo, Colombia; Boletin de Geologia, 43 (1), p. 99-126. **Gomez, J.** and Montes, N.E., 2020 : 5-11 Sheet of the Colombia Geological Atlas, 1 : 500 000 scale, Colombian Geological Service, Bogota.

Goosen, D., 1971 : Physiography and Soils of the Llanos Orientales, Colombia; International Institute for Aerial Survey and Earth Sciences (ITC) - Enschede - The Netherlands, Series B, number 64, 198 p.

Hernandez, O. and Alexander, G.C., 2018 : Vichada asteroid impact effects from simulation of regional environment consequences of meteoroid impact on Earth; Earth Sciences Research Journal, 22(1), p. 7-12.

Ibañez-Mejia, M. & Cordani, U.G. 2020. Zircon U-Pb geochronology and Hf-Nd-O isotopegeochemistry of the Paleo – to Mesoproterozoic basement in the westernmost Guiana Shield.**In**: Gómez, J. & Mateus-Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic –Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 65–90.

Jaramillo, M., 2021 : Report on the sampling program in the areas of Pijiguaos (Cedeño Municipality, State of Bolivar, Venezuela) and Puerto Carreño, Colombia in the Orinoco River region; Unpublished report for AUXICO Resources, January 2021, 36 p.

Jones, J.V., III, Piatak, N.M., and Bedinger, G.M., 2017 : Zirconium and Hafnium, chapter V of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. V1–V26.

Kamilli, R.J., Kimball, B.E., and Carlin, J.F., Jr., 2017 : Tin, chapter S of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. S1–S53.

Kroonenberg, S.B., de Roever, E.W.F., Fraga, L.M., Reis, N.J., Faraco, T., Lafon, J.-M., Cordani, U. and Wong, T.E., 2016 : Paleoproterozoic evolution of the Guiana Shield in Suriname : A revised model; Netherlands Journal of Geosciences, 95-4, p. 491-522.

Koonenberg, S.B., Mason, P.R.D., Kriegsman, L., de Roever, E.W.F. and Wong, T.E., 2019a : Geology and mineral deposits of the Guiana Shield; Mededeling Geologisch Mijnbouwkundige Suriname, 29, p. 111-115.

Kroonenberg, S.B., 2019b : The Proterozoic Basement of the Western Guiana Shield and the Northern Andes; in Cediel, F. and Shaw, R.P., eds, The Geology and Tectonics and Northwestern South America, p. 115-192, Springer, 2019

Legros, J.P., 2013 : Latérites et autres sols des régions intertropicales; Académie des Sciences et Lettres de Montpellier, Bulletin no. 44, p. 369-382.

Linnen, R.L. and Cuney, M., 2005 : Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization; in Linnen, R.L. and Samson, I.M., eds., Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada, GAC ShortCourse Notes 17, p.45-68.

Macambira, M.J.B., Teixeira, J.T., Daoud, W.K. and Costi, H.T., 1987 : Geochemistry, mineralizations and age of tin-bearing granites from Pitinga, NW Brazil; Revista Basileira de Geociencias, 17 (4), p. 562-570.

Mackay, D.A.R. and Simandl, G.J., 2015 : Niobium and Tantalum : Geology, markets and supply chains. British Colombia Geological Survey Paper 2015-3, p. 13-22

Nahon, D.and Tardy, Y., 1992 : The Ferruginous Laterites; in .C.R.M. Butt and H. Zeegers (eds.), Regolith Exploration Geochemistry in Tropical and Subtropical Terrains; Handbook of Exploration Geochemistry, Elsevier 1992, p. 41-55

Overstreet, W.C., 1967 : The Geologic Occurrence of Monazite; USGS Professional Paper 530, 327 p.

Pelletier, J. and Scodnick, J., 2022 : Preliminary metallogeny report & work program on the Minastyc deposit, Puerto Carreño District, Vichada, Colombia; Servicios Mineria CanaMex unpublished report for AUXICO Resources, 38 p.

Perez, H., Salazar, R., Penaloza, A., and Rodriguez, S., 1985, Evaluation preliminar geoeconomica de los aluviones presentando minerales de Ti, Sn, Nb y Ta del area de Boquerones y Aguamena, Distrito Cedeno, Estado Bolivar y Territorio Federal Amazonas: I Simposium Amazonico, Venezuela, Boletin de Geologia, Publicacion Especial No. 10, p. 587-602.

Popiela, B., 2020 : Satellite Study, Coltan prospect AOI-1 & AOI-2, Colombia. Unpublished report to AUXICO Resources by JAPOSAT Satellite Mapping, 30 p.

Popiela, B., 2021 : Remote Sensing Study, REE Prospect Minastyc South, Colombia; Multispectral surface signature targets similar to known REE sites Minastyc North; Unpublished report to AUXICO Resources by JAPOSAT Satellite Mapping, 32 p.

Schulz, K.J., Piatak, N.M., and Papp, J.F., 2017, Niobium and Tantalum, chapter M of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. M1–M34.

Sidder, G.B., 1990 : Mineral Occurrences of the Guiana Shield, Venezuela; U.S. Geological Survey, Open-file Report 90-16, 28 p.

Sidder, G.B. 1995 : Mineral Deposits of the Venezuelan Guayana Shield; USGS Bulletin 2124-O, p. O1-O20.

Sidder, G.B. and Mendosa-S. V., 1995 : Geology of the Venezuelan Guyana Shield and Its Relation to the Geology of the Entire Guyana Shield; U.S. Geological Survey Bulletin 2124-B, p. B1-B41.

UNODC, 2020 : Colombia Alluvial Gold Exploitation; Evidence from remote sensing 2019; United Natons Office on Drugs and Crime, 229 p.

Van Gosen, B.S., Verplanck, P.L., Seal, R.R., II, Long, K.R., and Gambogi, J., 2017, Rare Earth elements, chapter O of Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply; U.S. Geological Survey Professional Paper 1802, p. O1–O31.

Appendix I : Sample Locations & Descriptions

Id	E z19	N z19	El m	WP	Pit No.	Description	Sple Type	Sple-Wt g	Conc-Ratio	Date
S00357751	669464	668625	105	0030	MIN-01	siliceous material with Clay alteration	fine conc.	44	201	Aug 23
S00357752	669463	668635	90	0021		sample with obsdidian, in a breccia 2m wide	fine conc.	32	519	Aug 21
S00357753	669435	668622	89	0020	MIN-02	TA Zone Main Trench, channel sample 6" wide x 2- 3" deep x 2.5mL, 1.8m sand OB	fine conc.	23	513	Aug 23
S00357754	669435	668622				red gravel, vertical channel sample 2.3m (TW)	fine conc.	9	1435	Aug 23
S00357755	669435	668622				mafic bands in lateritic soil, rock samples	rock sample			Aug 23
S00357756	669420	668616	134	0031	MIN-03	sample taken across 1.9m (TW)	fine conc.	3	5182	Aug 23
S00357757	669430	668655	135	0037	MIN-08	channel sample taken vertically for 2.10m (TW)	fine conc.	43	411	Aug 23
S00357758	669423	668682	135	0038	MIN009	channel sample taken vertically for 0.80m (TW)	fine conc.	12	1440	Aug 23
S00357759	669423	668682	135	0038	MIN009	channel sample taken vertically for 1.20m (TW)	fine conc.	49	486	Aug 23
S00357760	669466	668738	90	0023	MIN010	5 grams of fines	fines 5 g	5		Aug 23
S00357762	669747	668153	97	0040	MIN011	4 shovels full from each pile, pit filled with water, Juan did not send a sample from this location	fine conc.	26	261	Aug 24
S00357763	669692	668142	100	0041	MIN012	80cm (TW) channel sample	fine conc.	34	199	Aug 24
S00357764	669605	668146	102	0042	MIN-013	60cm (TW) channel sample, 1m sand OB	fine conc.	23	416	Aug 24
S00357765	669646	668096	104	0043	MIN-014	rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an averageof 35cm, very oxidized	fine conc.	76	217	Aug 24
S00357766	669689	668074	108	0044	MIN-015	cannot sample in the pit, too much water, took 2 shovel fulls from different locations	fine conc.	36	293	Aug 24
S00357767	669499	667585	114	0046	MIN-017	pegmatitic laterite	fine conc.	35	233	Aug 24
S00357768	669543	667530	116	0047	MIN-018	no fines present				Aug 24
S00357769	669776	667155	118	0048	MIN-019	no fines present	no fines			Aug 24
S00357770	670030	667663	117	0049	MIN-020	no fines present	no fines			Aug 24
S00357771	670197	667864	123	0050	MIN-021	no fines present	no fines			Aug 24
S00357772	670199	667834	125	0051	MIN-022	no fines present	no fines			Aug 24
S00357773	669464	668625	105	0030	MIN-01	siliceous material with clay alteration	coarse gravel	1000	9	Aug 23
S00357774	669463	668635	90	0021		sample with obsdidian, in a breccia 2m wide	coarse gravel	1900	9	Aug 23
S00357775	669435	668622	89	0020	MIN-02	TA Zone Main Trench, channel sample 6" wide x 2- 3" deep x 2.5mL, 1.8m sand OB	coarse gravel	4200	3	Aug 23
S00357776	669435	668622				red gravel, vertical channel sample 2.3m (TW)	coarse aravel	5700	2	Aug 23
S00357777	669420	668616	134	0031	MIN-03	sample taken across 1.9m (TW)	coarse gravel	5400	3	Aug 23

Locations and descriptions of samples taken on the Mnastyc property by AUXICO in August 2021

Minastyc Technical Report - Vichada, Colombia

430 668655 423 668682 423 668682 466 668738 747 668153 592 668142	135 135 135 90 97	0037 0038 0038 0023 0040	MIN-08 MIN009 MIN009 MIN010	channel sample taken vertically for 2.10m (TW) channel sample taken vertically for 0.80m (TW) channel sample taken vertically for 1.20m (TW) channel sample taken vertically for 1.30m (TW)	coarse gravel coarse gravel coarse gravel coarse gravel	7100 7700 5700 6900	3 2 4 3	Aug 23 Aug 23 Aug 23 Aug 23
423 668682 423 668682 466 668738 747 668153 592 668142	135 135 90 97	0038 0038 0023 0040	MIN009 MIN009 MIN010	channel sample taken vertically for 0.80m (TW) channel sample taken vertically for 1.20m (TW) channel sample taken vertically for 1.30m (TW)	coarse gravel coarse gravel coarse gravel	7700 5700 6900	2 4 3	Aug 23 Aug 23
423 668682 466 668738 747 668153 592 668142	135 90 97	0038 0023 0040	MIN009 MIN010	channel sample taken vertically for 1.20m (TW) channel sample taken vertically for 1.30m (TW)	coarse gravel coarse gravel	5700 6900	4 3	Aug 23
466 668738 747 668153 592 668142	90 97	0023 0040	MIN010	channel sample taken vertically for 1.30m (TW)	coarse gravel	6900	3	Διια 23
747 668153 592 668142	97	0040						ruy ∠J
592 668142	100		MIN011	4 shovel fulls from each pile, pit filled with water, Juan did not send a sample from this location	coarse gravel	2700	3	Aug 24
	100	0041	MIN012	80cm (TW) channel sample	coarse gravel	2700	3	Aug 24
668146	102	0042	MIN-013	60cm (TW) channel sample, 1m sand OB	coarse gravel	1600	6	Aug 24
546 668096	104	0043	MIN-014	rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an averageof 35cm, very oxidized	coarse gravel	2600	6	Aug 24
589 668074	108	0044	MIN-015	cannot sample in the pit, too much water, took 2 shovel fulls from different locations	coarse gravel	1800	6	Aug 24
499 667585	114	0046	MIN-017	sand OB, red gravels, yellow alteration, & pegmatitic laterite	coarse gravel	1800	5	Aug 24
543 667530	116	0047	MIN-018	sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40m sulphide zone	rock sample			Aug 24
776 667155	118	0048	MIN-019	pit full of water, 2 shovel fulls taken from stockpile	coarse gravel	3000	5	Aug 24
030 667663	117	0049	MIN-020	pit full of water, 3 shovel fulls taken from stockpile	coarse gravel	4200	3	Aug 24
197 667864	123	0050	MIN-021	channel sample 3.60m (TW)	coarse gravel	1800	9	Aug 24
199 667834	125	0051	MIN-022	channel sample 1.35m (TW)	coarse gravel	1800	7	Aug 24
189 667857	85	0052	Area50- ptA	Bulk Sample Area 50 - Point A, 13 wheelbarrows at 128 kg / wheelbarrow	fine conc.	7700	425	Aug 26
5 5 5 5 1 1 1 1	 92 668142 05 668146 46 668096 89 668074 99 667585 43 667530 76 667155 30 667663 97 667864 99 667834 89 667857 TW 	92 668142 100 05 668146 102 46 668096 104 89 668074 108 99 667585 114 43 667530 116 76 667155 118 30 667663 117 97 667864 123 99 667837 85 TW: true w	92 668142 100 0041 05 668146 102 0042 46 668096 104 0043 89 668074 108 0044 99 667585 114 0046 43 667530 116 0047 76 667155 118 0048 130 667663 117 0049 97 667864 123 0050 99 667834 125 0051 89 667857 85 0052 D TW : true width True width	92 668142 100 0041 MIN012 05 668146 102 0042 MIN-013 46 668096 104 0043 MIN-014 89 668074 108 0044 MIN-015 99 667585 114 0046 MIN-017 43 667530 116 0047 MIN-018 76 667155 118 0048 MIN-019 130 667663 117 0049 MIN-020 97 667864 123 0050 MIN-021 99 667834 125 0051 MIN-022 89 667857 85 0052 ptA	926681421000041MIN012social (TW) channel sample056681461020042MIN-01360cm (TW) channel sample, 1m sand OB rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an averageof 35cm, very oxidized466680961040043MIN-014very oxidized896680741080044MIN-015shovel fulls from different locations996675851140046MIN-017pegmatitic laterite sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40m436675301160047MIN-019pit full of water, 2 shovel fulls taken from stockpile1306676631170049MIN-020pit full of water, 3 shovel fulls taken from stockpile996678641230050MIN-022channel sample 3.60m (TW)996678641250051MIN-022channel sample 1.35m (TW)89667857850052ptA128 kg / wheelbarrow	926681421000041MIN012soluti (TW) channel sampleCoarse gravel056681461020042MIN-01360cm (TW) channel sample, 1m sand OB rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an averageof 35cm, very oxidizedcoarse gravel466680961040043MIN-014very oxidizedcoarse gravel896680741080044MIN-015cannot sample in the pit, too much water, took 2 shovel fulls from different locationscoarse gravel996675851140046MIN-017sand OB, red gravels, yellow alteration, & pegmatitic laterite sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40mcoarse gravel766671551180048MIN-019pit full of water, 2 shovel fulls taken from stockpile toold water, 3 shovel fulls taken from stockpile coarse gravelcoarse gravel976678641230050MIN-022channel sample 3.60m (TW)coarse gravel99667857850052pt128 kg / wheelbarrows at 128 kg / wheelbarrows at pt Afine conc.	926681421000041MIN012South (TW) channel sampleLoarse gravelCoarse gravel2700056681461020042MIN-01360cm (TW) channel sample, 1m sand OB rocks are lateritic, semi-massive to massive sulphides (Fe), took a composite sample from 4 locations at pit, dug down to an averageof 35cm, very oxidizedcoarse gravel1600896680741080044MIN-015cannot sample in the pit, too much water, took 2 shovel fulls from different locationscoarse gravel2600896680741080044MIN-015sand OB, red gravels, yellow alteration, & pegmattic laterite sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40m sulphide zonecoarse gravel1800996675631160047MIN-018sulphide zonecoarse gravel1800306676631170049MIN-020pit full of water, 2 shovel fulls taken from stockpile pit full of water, 3 shovel fulls taken from stockpilecoarse gravel3000306678641230050MIN-021channel sample 1.35m (TW)coarse gravel180099667857850052Area50- pt ABulk Sample Area 50 - Point A, 13 wheelbarrows at 128 kg / wheelbarrowfine conc.7700	926681421000041MIN012social (W) channel samplemand DBcoarse gravel27003056681461020042MIN-01360cm (TW) channel sample, 1m sand OBcoarse gravel16006466680961040043MIN-014very oxidizedcoarse gravel16006896680741080044MIN-015shovel fulls from different locationscoarse gravel26006996675851140046MIN-017sand OB, red gravels, yellow alteration, & pegmatitic laterite sample taken from stockpile due to excessive water in the pit, 2.20m sand OB, then the bottom 0.40m rock samplecoarse gravel18005766671551180048MIN-019pit full of water, 2 shovel fulls taken from stockpile ore coarse gravelcoarse gravel30005306676631170049MIN-020pit full of water, 3 shovel fulls taken from stockpile coarse gravelcoarse gravel18009976678641230050MIN-020pit full of water, 3 shovel fulls taken from stockpile coarse gravelcoarse gravel1800998667857850051MIN-022channel sample 3.60m (TW)coarse gravel1800789667857850052ptA128 kg / wheelbarrowfine conc.7700425

OB : overburben

WP : way point

Appendix II : Analytical Results

Lab Id	E z19	N z19	SiO2	AI2O3	TiO2	Fe2O3	MgO	CaO	Na2O	K20	P205	LOI	ZrO2	MnO	PbO	ZnO	WO3	SnO2
S00357751	669464	668625	56,19	2,19	19,51	14,17	0,02	0,03			0,40	0,34	3,94	0,64	0,03		0,04	1,14
S00357752	669463	668635	47,72	1,88	23,24	19,54	0,02	0,07			0,11		5,33	0,82		0,13		0,86
S00357753	669435	668622	33,55	2,60	28,01	26,49	0,03	0,05			0,07		7,58	1,16		0,08		0,06
S00357754	669435	668622	18,31	1,12	33,16	31,84	<u> </u>	ļ		0,14	0,18		12,36	1,34	0,06	0,06		0,13
S00357755	669435	668622																
S00357756	669420	668616	33,84	2,30	28,75	26,00	0,02	0,06			0,09		7,34	1,21		0,09		
S00357757	669430	668655	40,08	2,01	26,38	24,66	0,02		ļ		0,06		5,45	0,93		0,07		
S00357758	669423	668682	23,76	1,13	30,22	31,25	0,06				0,11		11,55	1,26		0,08		
S00357759	669423	668682	47,57	1,78	23,32	20,36					0,04		5,61	0,91		0,15		
S00357760	669466	668738	26,87	0,77	18,62	25,32	0,02				0,09		26,06	1,26		0,08		
S00357762	669747	668153	53,57	2,17	19,20	18,16				0,19	0,04		5,46	0,80		0,01		
S00357763	669692	668142	36,63	9,28	22,30	22,65	0,04	0,15	0,03	0,40	0,12		7,09	0,82				
S00357764	669605	668146	42,91	6,12	23,61	17,91		0,11	0,02		0,09		8,01	0,72		0,03		
S00357765	669646	668096	33,20	1,94	29,31	28,11	<u> </u>	0,12			0,05		5,59	1,18	0,02	0,04		
S00357766	669689	668074	42,23	1,94	26,03	23,13					0,03		5,15	0,97		0,03		
S00357767	669499	667585	60,06	2,45	16,36	16,76	0,03	0,26		0,06	0,07		3,09	0,65	0,02			
S00357773	669464	668625		<u>.</u>	0,37		<u>.</u>			<u></u>				<u>.</u>		ļ		
S00357774	669463	668635	65,19	8,90	0,30	20,50	0,01	0,03	0,02	0,18	0,10	4,72	0,03			<u> </u>		
S00357775	669435	668622																
S00357776	669435	668622	61,62	7,60	0,29	25,18	ļ		0,01	0,07	0,17	5,01	0,05			ļ		
S00357777	669420	668616	52,57	12,61	0,37	26,85	<u>.</u>	0,09	ļ	0,07	0,13	7,21	0,08	<u>.</u>	0,01	ļ		
S00357778	669430	668655	42,42	18,33	0,53	29,79	<u> </u>	0,08		0,06	0,11	8,53	0,12		0,02	0,02		
S00357779	669423	668682	57,04	7,92	0,29	28,71	0,01			0,10	0,22	5,66	0,04			0,02		
S00357780	669423	668682	36,71	20,46	0,52	32,06	<u> </u>	0,08		0,03	0,14	9,77	0,07	0,14		0,02		
S00357781	669466	668738	49,52	10,92	0,30	32,62	0,03	0,06	0,03	0,38	0,19	5,92	0,05					
S00357782	669747	668153	47,58	23,35	0,91	16,35	0,03	0,08	0,04	2,39	0,21	8,85	0,11	0,03				
S00357783	669692	668142	65,91	19,48	0,34	3,51	0,06	0,27	0,23	6,18	0,11	3,78	0,05	0,09				
S00357784	669605	668146	89,53	6,54	0,11	1,57					0,02	2,13	0,03				0,07	
S00357785	669646	668096	17,62	19,72	0,77	51,25	0,02	0,05		0,24	0,22	10,02	0,10					
S00357786	669689	668074	37,78	23,33	1,13	26,93	0,02	0,13	ļ	0,21	0,21	10,05	0,15	ļ		ļ		
S00357787	669499	667585	45,00	30,59	0,59	11,56	0,04	0,32	0,17	1,90	0,22	9,54	0,07			ļ		
S00357789	669776	667155	50,87	17,78	0,58	23,59	0,07		0,10	0,78	0,12	6,07	0,04			ļ		ļ
S00357790	670030	667663	33,82	13,86	0,50	44,55	0,04		0,03	0,67	0,09	6,38	0,05		0,02	ļ		
S00357791	670197	667864	41,46	11,83	0,53	38,22	0,06	0,11	0,06	0,68	0,40	6,62	0,04	<u>.</u>		0,01		
S00357792	670199	667834	26,11	19,38	0,71	43,87	0,06			0,78	0,14	8,90	0,04		0,02			
S00357793	670189	667857	2,72	1,06		4,11	<u>.</u>	0,40			13,99	4,16	0,73	3,55	0,41			0,19

Analytical results from AUXICO samples taken in August 2021, all in wt % unless specified

Au ppm	Pt ppm	Ag ppm	Pd ppm	Nb205	Ta2O5	HfO2	ThO2	UO2	CeO2	Nd2O3	La2O3	Pr203	Sm203	Gd2O3	Dy2O3	Y2O3	Yb2O3	Er2O3
				0,24		0,17	0,11		0,51	0,16	0,15		ļ			0,017		
				0,15	0,04	0,08										0,006		
				0,16		0,16										0,004		
				0,78		0,39										0,122		
16	38	tr	tr															
				0,17		0,14							ļ			0,01		
				0,15		0,10				0,09						tr		
				0,16		0,41										0,01		
				0,13		0,13												
				0,22		0,67										0,04		
				0,12		0,28							ļ			tr		
				0,15		0,24				0,12			ļ			tr		
				0,15		0,27	0,05									0,01		
				0,18		0,28												
				0,16		0,19				0,13						tr		
				0,10		0,08							ļ					
13	53																	
13	38																	
23	20	19	19										ļ					
46	31	tr	tr															
63	15												<u> </u>					
56	25	tr	tr															
19	0,2	tr	tr															
32		32		tr									ļ					
																tr		
										0,07						<u>.</u>		
63	15			tr												tr		
11	tr	tr	tr															
	<u>.</u>			<u>.</u>									<u> </u>			<u> </u>		
15													1			<u> </u>		
13																		
				0,62	0,72	0,21	7,27	0,18	38.68	7.27	6.91	2.07	2.20	1.10	0.48	0.04	0.95	0,01

Appendix III : Distribution of Auger Holes

Proposed distribution of auger holes on the Minastyc property for the 2022 program

Minastyc proposed auger hole coordinates for the 2022 program

Id	Easting	Northing	Id	Easting	Northing	Id	Easting	Northing
2	667593	669674	79	668175	670082	115	668154	669916
3	667503	669677	80	668097	670083	116	668241	669505
46	667697	669673	81	668052	670164	117	668144	669505
47	667766	669673	82	667964	670166	118	668053	669502
48	667631	669589	83	668269	670164	119	668781	669726
49	667553	669591	84	668210	670165	120	668677	669727
50	667458	669594	85	668136	670166	121	668581	669729
51	667599	669521	86	668010	670246	122	668140	669416
52	667503	669525	87	667925	670248	123	668071	669416
53	667403	669677	89	668173	670243	124	667985	669414
54	667291	669680	90	668090	670246	125	668824	669814
55	667860	669754	91	667728	670003	126	668736	669813
----	--------	--------	-----	--------	--------	-----	--------	--------
56	667767	669758	92	667635	670003	127	668637	669808
57	667659	669758	93	667820	670000	128	668728	669640
58	667547	669761	94	667776	670087	129	668626	669640
59	667895	669834	95	667684	670086	130	668523	669642
60	667816	669835	96	667856	670083	131	668869	669728
61	667724	669835	97	667810	670169	132	668826	669637
62	667615	669838	98	667730	670170	133	668680	669559
63	668120	669833	99	667885	670167	134	668586	669559
64	668054	669832	100	667780	670248	135	668486	669559
65	667979	669835	101	668173	669775	136	668767	669562
66	667934	669918	102	667853	670246	137	668655	669481
67	667854	669919	103	667815	670309	138	668550	669481
69	668095	669916	104	667753	670300	139	668761	669481
70	668018	669918	105	667886	670306	140	668603	669402
71	667978	669999	106	667775	669916	141	668707	669401
72	667899	670000	107	667688	669918	142	668649	669315
73	668203	669995	108	668102	669751	143	668523	669315
74	668137	669999	109	668154	669717	144	668760	669315
75	668060	669999	110	668078	669669	145	668556	669217
76	668011	670086	111	668160	669669	146	668654	669218
77	667933	670085	112	668128	669583	147	668778	669872
78	668239	670083						

Minastyc Technical Report - Vichada, Colombia

Page 67

WAV	ELENGTH DISPERSIV	/E X-RAY FLUOR	ESCENCE REPORT		Olpha		WAVEL	ENGTH DISPERSIV	VE X-RAY FLUO	RESCENCE REPORT		Olpha 1
Identification Sample Type: I Origin: I	500357753 CANECA 1 DESCONOCIDO DESCONOCIDO	i S	Consecutive of Sample: Responsible for Sampling ampling Plan/Procedure: Date Received:	AUX 26106 CLIENT NONE 02/09/2021	Servicios Analíticos		Identification 500 Sample Type: DES Origin: DES	0357754 CANECA 1 SCONOCIDO SCONOCIDO	:	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26107 CLIENT NONE 02/09/2021	Servicios Analíticos
Client: Contact: Address:	AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OUEST	r	Date of Analysis: Date of Report:	15/09/2021 15/09/2021			Client: AUX Contact: TIFF Address: 201	IICO RESOURCES FANY CIFUENTES I RUE NOTRE DAME OUEST	г	Date of Analysis: Date of Report:	15/09/2021 15/09/2021	
City: 1 Phone Number:	MONTREAL 1 4384999621		Solicitud Análisis: Consecutive of Report:	SA7735 26106-RE XRF		P	City: MON None Number: 1 43	NTREAL 384999621		Solicitud Análisis: Consecutive of Report:	SA7735 26107-RE XRF	
Method of Analysis: I FT-GT-35 Versión 3	Prt-gt-01 WDXRF-omnian P/	ASTILLA	Application:	1,11 AQ 2020 Página 1 de 1		FT-GT-35 Versio	od of Analysis: PRT- 6n 3	-gt-01 WDXRF-omnian P	erla	Application:	1,11 AQ 2020 Página 1 de 1	
		UBSERVATIONS							OBSERVATIONS			
	Name	Element	Composition (%)					Name	Element	Composition (%)		
	Magnesium	MgU	0,03					Aluminum	Al ₂ O ₃	1,13		
	Aluminum	Al2U3	2,00					Silicon	SiO2	18,31		
	Dhoenhorue	B.O.	0.07					Phosphorus	P205	0,18		
	Calcium	(205	0,07				_	Potassium	N20	0,14		
	Manganese	MnO	1.16					Manganese	TIO	1,24		
	Titanium	TiO	28.00					Iron	Fe.O.	31.84		
	Iron	Fe ₂ O ₃	26.49				-	Zinc	70	0.07		
	Zinc	ZnO	0,08				\vdash	Zirconium	ZrO ₅	12.36		
	Zirconium	ZrO ₂	7,58					Niobium	Nb ₂ O ₂	0.78		
	Niobium	Nb ₂ O ₅	0,16					Lead	PbO	0.06		
	Hafnium	HfO ₂	0,16					Hafnium	HfO	0,39		
	Tin	SnO ₂	0,06					Tin	SnO ₂	0,13		
[Loss of Ignition	LOI	N.D.					Loss of Ignition	LOI	N.D.		
1		REE							REE			
	Name	Element	Composition (%)					Name	Element	Composition (%)		
	Cerium	CeO ₂	N.D.					Cerium	CeO ₂	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.					Neodymium	Nd ₂ O ₃	N.D.		
	Lanthanum	La ₂ O ₃	N.D.					Lanthanum	La ₂ O ₃	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.					Praseodymium	Pr ₂ O ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.					Samarium	Sm ₂ O ₃	N.D.		
	Gadolinium		N.D.					Gadolinium	Gd ₂ O ₃	N.D.		
-	Vittelum	Uy ₂ U ₃	N.D.					Dysprosium	Dy ₂ O ₃	N.D.		
	Vtterbium	1203 Vb.0	0,004					Yttrium	Y ₂ O ₃	0,12		
	Erbium	Fr 0	N.D.					Ytterbium	Yb ₂ O ₃	N.D.		
	Total Pare Farth	L1203	N.D.					Erbium	Er ₂ O ₃	N.D.		
	Elements	REE	0,0					Total Rare Earth Elements	REE	0,1		
Observations			Т							-		
N.D. : NOT DETECTABLE LOI : (LOSS	OF IGNTION) 1000°C for 1 hour					Observations		Q/TION) 1000% for 1 hours				
The analysis corresponds to a semi-q	uantitative program (max std 5%). Th	ne result is based on dried mat	en Approved by Jairo Torres			The analysis cor	rresponds to a semi-quanti	itative program (max std 5%). Th	he result is based on dried ma	ter Approved by Jairo Torres		
This technique does not validate the nor	ne presence of elements not detected if	f they are below 100ppm. Our tr	General Manager			This technique de	ices not validate the none or	resence of elements not detected it	f they are below 100ppm. Our t	General Manager		
For the validity or applicability of the res	ults with commercial ends, Alpha1 S.A.S	5 does not take responsibility for	the representativity			For the validity of	or applicability of the results v	with commercial ends, Alpha1 S.A.	S does not take responsibility fo	r the representativity		
and traceability of the sample and forwa Moisture	rds them to the Sampling Plan/Procedu 0.29 %	ire referenced above.	-		AK 60 No. 678 80 R. Modelo Norto	and traceability of	of the sample and forwards t	them to the Sampling Plan/Procedu	ure referenced above.	_		
Radioactivity	NONE µS	iv/h	Produce by Juan Sebastia	n Betancourt	AN OU NO. 07- OU D. MODELO NOILE Bogotá D.C.	Radioactivity		N.A. % NONE uS	i Sw/h	Produce by Juan Sebastia	n Betancourt	AK 60 No. 67 ^a 80 B. Modelo Norte
Sample quantity	25g		Analyst		Tel. (57-1) 2313518	Sample quantity	у	15g		Analyst		Bogotá D.C.
Magnetic Characteristics: Notes:	NONE		4		Móvil 3134549361	Magnetic Charac	icteristics:	NONE		_		Iel. (57-1) 2313518 Máril 2124540261
1. Alpha1 S.A.S reserves the right to confi	rm the authenticity of this report of analys	sis under the policies of confidenti	ality and property rights of our clients.		www.alpha1.com.co	notes: 1. Alpha1 S.A.S re	eserves the right to confirm th	he authenticity of this report of analy:	sis under the policies of confident	iality and property rights of our clients.		www.alpha1.com.co
 me analytical results present correspondence of the sample. Every This report is only for this sample. Every 	w coccosivect to the sample received an y copy of the results on paper will have an	n additional 15% cost of the price	of the analysis.	ge	renciaadministrativa@alpha1.com.co	2. The analytical m	results present correspond EX	ICLUSIVELY to the sample received a	and NOT to any other material of t	he same origin.		gerenciaadministrativa@alpha1.com.co
4, The complete or partial reproduction of	the report is prohibited without written ap	pproval of Apha1 S.A.S.	ant by Alabart C.S.C.			3. This report is of 4, The complete of	or partial reproduction of the r	report is prohibited without written a	er auumonar 10% cost of the price pproval of Apha1 S.A.S.	e or une analysis.		
6, The disposal of the countersamples and	i unused samples is done in accordance w	with what has been approved with	the client in the request of analysis.			5. Any inconvenier 6. The discussion	ences with the results can be p	processed within 3 months after the t	the report has been sent to the d	lient by Alpha1 S.A.S.		
					,	o, me asposal of	n one countersamples and unu	www.semples is cone in accordance v	mus must has been approved with	we were in the request of analysis.		

WA	ELENGTH DISPERSI	VE X-RAY FLUOR	ESCENCE REPORT			WA	VELENGTH DISPERS	IVE X-RAY FLUO	RESCENCE REPORT		Servicios Analíticos
Identification Sample Type: Origin:	500357756 CANECA 1 DESCONOCIDO DESCONOCIDO	Ra	Consecutive of Sample: esponsible for Sampling ampling Plan/Procedure:	AUX 26108 CLIENT NONE	Servicios Analíticos	Identification Sample Type: Origin:	500357757 CANECA 1 DESCONOCIDO DESCONOCIDO		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure:	AUX 26109 Client None	
Client: Contact	AUXICO RESOURCES		Date Received: Date of Analysis: Date of Report	02/09/2021 15/09/2021 15/09/2021		Client: Contact	AUXICO RESOURCES		Date Received: Date of Analysis: Date of Report:	02/09/2021 15/09/2021 15/09/2021	
Address:	201 RUE NOTRE DAME OUES	т		15/05/2021		Address	201 RUE NOTRE DAME OUE	EST		13/03/2021	
City: Phone Number:	1 4384999621		Solicitud Análisis: Consecutive of Report:	SA7735 26108-RE XRF		City: Phone Number:	MONTREAL 1 4384999621		Consecutive of Report:	SA7735 26109-RE XRF	
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN P	PASTILLA	Application:	1,11 AQ 2020		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	I PASTILLA	Application:	1,11 AQ 2020	
FI-6I-35 Version 3	-	OBSERVATIONS		Pagna Loe L		FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1	
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Magnesium	MgO	0,02				Magnesium	MgO	0,02		
	Aluminum	Al ₂ O ₃	2,30				Aluminum	Al ₂ O ₃	2.01		
	Silicon	SiO ₂	33,83				Silicon	SiO ₂	40,06		
	Phosphorus	P205	0,08				Phosphorus	P205	0,06		
	Calcium	CaO	0,06				Manganese	MnO	0.93		
	Manganese	MnO	1,20				Titanium	TiO ₂	26,36		
	Titanium	TiOz	28,73				Iron	Fe ₂ O ₂	24.65		
	Iron	Fe ₂ O ₃	25,98				Zinc	ZnO	0.07		
	Zinc	ZnO	0,09				Zirconium	Zr0-	5.45		
	Zirconium	Zr0 ₂	7,36				Niobium	Nb ₂ O ₅	0.15		
	Niobium	Nb ₂ O ₅	0,17				Hafnium	HfO	0,10		
	Hafnium	HfO ₂	0,14				Loss of Ignition	10	N D		
	Loss of Ignition	LOI	N.D.				Loss of Ightaon	201	nio.		
		REE						REE			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Cerium	CeO ₂	N.D.				Cerium	CeO ₂	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.				Neodymium	Nd ₂ O ₃	0,09		
	Lanthanum	La ₂ O ₃	N.D.				Lanthanum	La ₂ O ₃	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				Praseodymium	Pr ₂ O ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Samarium	Sm ₂ O ₃	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Gadolinium	Gd ₂ O ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Dysprosium	Dy ₂ O ₃	N.D.		
	Yttrium	Y203	0,005				Yttrium	Y ₂ O ₃	0,004		
	Ytterbium	Yb ₂ O ₃	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Erbium	Er ₂ O ₃	N.D.		
	Total Rare Earth Elements	REE	0,0				Total Rare Earth Elements	REE	0,1		
Observations			T			Observations					
N.D. : NOT DETECTABLE LOI : (LOS	5 OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour				
The analysis corresponds to a semi-	quantitative program (max std 5%). Th	The result is based on dried mater	n Approved by Jairo Torre General Manager			The analysis corresponds to a semi-	-quantitative program (max std 5%)	. The result is based on dried ma	ateri Approved by Jairo Torre: General Manager	5	
For the validity or applicability of the re	esults with commercial ends, Alpha1 S.A.	LS does not take responsibility for t	1 he representativity			This technique does not validate the n	none presence of elements not detecte	ed if they are below 100ppm. Our t	trace		
and traceability of the sample and forv	ands them to the Sampling Plan/Proced	fure referenced above.				and tracephility of the cample and for	wards them to the Samolinn Plan Pro-	edure referenced shove			
Moisture Radioartivity	0,35 %	6 Suite	Produce by Juan Sebastic	n Betencourt	AK 60 No. 672 80 B. Modele Nasta	Moisture	0,3	%			
Sample quantity	40g	untur -	Analyst	Petallount	Bogotá D C	Radioactivity	NONE	µSw/h	Produce by Juan Sebastia	an Betancourt	AK 60 No. 67ª 80 B. Modelo Norte
Magnetic Characteristics:	NONE		rainifat		Tel. (57-1) 2313518	Sample quantity	45g NONE		Analyst		Bogotá D.C.
Notes:	from the authenticity of this report of each	als under the policies of confidential	by and property debts of our close		Móvil 3134549361	Notes:	none				Tel. (57-1) 2313518
2. The analytical results present corresp	and EXCLUSIVELY to the sample received a	and NOT to any other material of the	same origin.		www.alpha1.com.co	1. Alpha1 S.A.S reserves the right to con 2. The application excits a	nfirm the authenticity of this report of an	alysis under the policies of confider	tiality and property rights of our clients.		Móvil 3134549361
3. This report is only for this sample. Even	ry copy of the results on paper will have a of the report is prohibited without willing a	an additional 15% cost of the price of	f the analysis.		gerenciaadministrativa@alpha1.com.co	2. The analytical results present corresp 3. This report is only for this sample. Ev	ery copy of the results on paper will hav	e an additional 15% cost of the pric	e of the analysis.		www.alpha1.com.co
5. Any inconveniences with the results co	in the processed within 3 months after the	the report has been sent to the clier	nt by Alpha1 S.A.S.			4, The complete or partial reproduction	of the report is prohibited without writte	n approval of Alpha1 S.A.S.			gerenciaadministrativa@alpha1.com.co
6, The disposal of the countersamples as	nd unused samples is done in accordance	with what has been approved with th	e client in the request of analysis.			5. Any inconveniences with the results o 6, The disposal of the countersamples a	an be processed within 3 months after t ind unused samples is done in accordan	he the report has been sent to the ce with what has been approved wit	client by Alpha1 S.A.S. h the client in the request of analysis.		

WAY	ELENGTH DISPERSIV	E X-RAY FLUOR	ESCENCE REPORT		Servicios Analíticos	WA	VELENGTH DISPERS	SIVE X-RAY FLUOR	ESCENCE REPORT		Servicios Analic
Identification	500357758 CANECA 1		Consecutive of Sample:	AUX 26110		Identification	500357759 CANECA 1		Consecutive of Sample:	AUX 26111	
Sample Type:	DESCONOCIDO	R	esponsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO	F	Responsible for Sampling	CLIENT	
Origin:	DESCONOCIDO	Sa	Impling Plan/Procedure:	NONE		Origin:	DESCONOCIDO	S	ampling Plan/Procedure:	NONE	
Client	AUXICO RESOLIRCES		Date of Analysis	15/09/2021		Client	AUXIO RESOURCES		Date Received.	15/09/2021	
Contact:	TIFFANY CIFUENTES		Date of Report:	15/09/2021		Contact	TIFFANY CIFUENTES		Date of Report:	15/09/2021	
Address:	201 RUE NOTRE DAME OUEST					Address	201 RUE NOTRE DAME OUI	EST	•		
City:	MONTREAL		Solicitud Análisis:	SA7735		City:	MONTREAL		Solicitud Análisis:	SA7735	
Phone Number: Method of Analysis:	1 4384999621 DDT CT 01 WDVDE OMNIAN DEI	DLA	Consecutive of Report:	20110-KE AKF		Phone Number:	: 1 4384999621	DACTULA	Consecutive of Report:	26111-RE XRF	
5 Versión 3			Аррисанон.	Pagina 1 de 1		Method of Analysis:	: PRI-GI-UT WUARF-UMINIAN	N PASTILLA	Application:	1,11 AQ 2020	
		OBSERVATIONS						OBSERVATIONS			
1	Name	Flement	Composition (%)				Nama	Element	Composition (%)		
	Magnesium	MaQ	0.06				Aluminum	Al-O-	1 79		
	Aluminum	Al ₂ O ₂	1.13				Silicon	50	47.57		
	Silicon	SiO2	23.76				Phoephorus	9.0 ₂	47,57		
	Phosphorus	P-0=	0.11				Manganasa	F 205	0,04		
	Manganese	MnO	1,26				Titonium	TiO	22.22		
	Titanium	TiO2	30.22				Intenium	110 ₂	23,32		
	Iron	Fe ₂ O ₂	31.25				iron 7in -	re203	20,35		
	Zinc	7n0	0.08				∠inc	ZnU	0,15		
	Zirconium	7r0	11 55				Zirconium	ZrU ₂	5,61		
	Niobium	Nb ₂ O ₂	0.16				Niobium	Nb ₂ O ₅	0,13		
	Hafnium	HfO	0,10				Hafnium	HfO ₂	0,13		
	Loss of Ignition	10	N.D.				Loss of Ignition	LOI	N.D.		
	Loss of ignition	LOI	N.D.					REF			
		REE					Name	Flement	Composition (%)		
	Name	Element	Composition (%)				Cerium	CeOn	N D		
	Cerium	CeO ₂	N.D.				Neodymium	Nd ₂ O ₂	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.				Lanthanum	10203	N.D.		
	Lanthanum	La ₂ O ₃	N.D.				Pracoodumium	Pr-O-	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				Samarium	Sm 0	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Cadalinium	5111203 Cd 0	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Gadolinium	du ₂ O ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Dysprosium	Dy ₂ U ₃	N.D.		
	Yttrium	Y ₂ O ₃	0,01				rttrium	Y ₂ U ₃	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.				Ytterbium	YD ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Erbium	Er ₂ O ₃	N.D.		
	Total Rare Earth						Total Rare Earth	REF	0.0		
	Elements	REE	0,0				Elements	nee	0,0		
			. 								
1			1			Observations					
	OF ICNTIONI, 10008C for 1 hours					N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour				
VOI DETECTABLE LOT . (LOS.	OP Idivition) 1000 Clor 1 Hour		Annual built in Trans			The analysis corresponds to a semi-	-quantitative program (max std 5%)). The result is based on dried mat	an Approved by Jairo Torres		
alysis corresponds to a semi-	quantitative program (max std 5%). The	result is based on dried mater	General Manager	5		This technique does not validate the r	none presence of elements not detect	′ ted if they are below 100nnm. Our to	General Manager		
hnique does not validate the n	one presence of elements not detected if th	ey are below 100ppm. Our trac				For the validity or applicability of the r	noute with commercial ands. Alaba 1.5	S A S door not take receptivity for	the representativity		
validity or applicability of the re	sults with commercial ends, Alpha1 S.A.S o	ioes not take responsibility for t	the representativity			For the validity of applicability of the r	esuits with commercial erros, Alpha I :	six s does not take responsibility for	the representativity		
ceability of the sample and forw	ards them to the Sampling Plan/Procedure	referenced above.	4			Moisture	0,17	%	-		
ctivity	NONE µSv/	h	Produce by Juan Sebastia	an Betancourt		Radioactivity	NONE	μSv/h	Produce by Juan Sebastia	n Betancourt	
quantity	15g		Analyst		AK 60 No. 6/* 80 B. Modelo Norte	Sample quantity	15g	_	Analyst		AK 60 No. 67ª 80 B. Modelo No
etic Characteristics:	NONE		1		Bogota D.C.	Magnetic Characteristics: Notes:	NONE				Bogotá D
: hall S.A.S reserves the right to con	frm the authenticity of this report of analysis	under the policies of confidentia	ality and property rights of our clients		Tel. (5/-1) 2313518	1. Alpha1 S.A.S reserves the right to co	nfirm the authenticity of this report of a	nalysis under the policies of confidenti	ality and property rights of our clients.		Tel. (57-1) 23135
analytical results present corresp	and EXCLUSIVELY to the sample received and	NOT to any other material of the) same origin.		MOVII 3134549361	2. The analytical results present corresp	oond EXCLUSIVELY to the sample receive	ed and NOT to any other material of th	e same origin.		Móvil 31345493
report is only for this sample. Eve	ry copy of the results on paper will have an a of the report is prohibited without with	udditional 15% cost of the price o	if the analysis.		www.aipnai.com.co	 This report is only for this sample. Ev The complete or nartial reproduction 	of the report is prohibited without write	ve an additional 15% cost of the price en approval of Alpha1 S A S	of the analysis.		www.alpha1.com
complete or patial second second	in use report is promoted without written app	rome or Aphai 3.4.3.			gerenciaadministrativa@alpha1.com.co			an approved on reprint sources			gerenciaadministrativa@alpha1.com
e complete or partial reproduction inconveniences with the results ca	n be processed within 3 months after the the	report has been sent to the clier	nt by Alpha1 S.A.S.		A	5. Any inconveniences with the results of	can be processed within 3 months after 1	the the report has been sent to the ci	ent by Alpha I S.M.S.		gerenciadummistrativa(waipna r.com

anne

WA	VELENGTH DISPERSI	VE X-RAY FLUOR	ESCENCE REPORT		Servicios Analíticos	WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT					Servicios Analítico:
Identification Sample Type Origin	Identification 500357760 (ANECA 1 Consecutive of Sampler Sample Type: DESCONOCIDO Responsible for Sampling Origin: DESCONOCIDO Sampling Plan/Procedure: Date Received: Client: AUXICO RESOURCES Date of Analysis: Contact: TIFANY CIPUENTES Date of Report: Address: 200 NUE NOTRE DAME OUEST					Identification Sample Type Origin	n 500357762 CANECA 1 :: DESCONOCIDO :: DESCONOCIDO :: AUXICO DESCUIDOES	:	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26113 CLIENT NONE 02/09/2021	
Contact Address City	: TIFFANY CIFUENTES 201 RUE NOTRE DAME OUES MONTREAL	т	Date of Report: Solicitud Análisis:	15/09/2021 SA7735		Contact Address City	E AUAICO RESOURCES E TIFFANY CIFUENTES © 201 RUE NOTRE DAME OUI 7: MONTREAL	EST	Date of Report: Solicitud Análisis:	15/09/2021 SA7735	
Phone Number Method of Analysis	: 1 4384999621		Consecutive of Report:	26112-RE XRF		Phone Number	: 1 4384999621		Consecutive of Report:	26113-RE XRF	
FT-GT-35 Versión 3		OBSERVATIONS	приканоп.	Página 1 de 1		FT-GT-35 Versión 3	. Thistore working of high	ORSERVATIONS	дрисацоп.	Página 1 de 1	
		Objektivitoko						ODSERVATIONS			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Magnesium	MgU	0,02				Aluminum	A1203	2,17		
	Aluminum	AI2U3	0,77				Silicon	510 ₂	53,56		
	Dheenhorus	5102 R.O.	20,00				Phosphorus	F205	0,04		
	Mongonoos	F2U5	0,09				Potassium	N20	0,19		
	Titopium	TiO	1,15				Titenium	MINU	0,80		
	Iron	FeaOs	25.31				Iron	Fe-O-	19,20		
	Zinc	7n0	0.08				Zinc	7.0	0.01		
	Zinc	210 7r0	26.05				Zinc	2n0 7r0-	5.46		
	Nichium	Nb-O-	0.22				Alichium	ZIO2	0,12		
	Hafnium	HfO	0,22				Hafpium	HfO	0,12		
	Loss of Ignition	10	0.14					10	0,20 N D		
	Loss of Ighlaon	DEC	0,14				Loss of Ignition	EOI	N.D,		
		REE						REE			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Needumium	Nd O	N.D.				Cerium	CeO ₂	N.D.		
	Neodymium	Nu ₂ O ₃	N.D.				Neodymium	Nd ₂ U ₃	N.D.		
	Praseodymium	PraOa	N.D.				Braceodymium	Rr O	N.D.		
	Samarium	Sm202	N.D.				Samarium	Sm_0	N.D.		
	Gadolinium	Gd202	N.D.				Gadolinium	Gd_0-	N.D.		
	Dysprosium	Dv ₂ O ₂	N D				Dueprocium	Dv_0-	N.D.		
	Yttrium	Y203	0.04				Yttrium	¥203	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.				Ytterbium	Yh ₂ O ₂	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Frbium	Er ₂ O ₂	N.D.		
	Total Bare Farth	- 2 - 3					Total Bare Earth	2.203			
	Elements	REE	0,0				Elements	REE	0,0		
Observations			1			Observations					
N.D. : NOT DETECTABLE LOI : (LO	SS OF IGNTION) 1000°C for 1 hour		Assessed by Joine Terror			N.D. : NOT DETECTABLE LOI : (LO	ISS OF IGNTION) 1000°C for 1 hour				
This technique dees not up dees	inquantitative program (max std 5%). 1	ine result is based on dried mate	General Manager			The analysis corresponds to a sem	ii-quantitative program (max std 5%)	. The result is based on dried ma	General Manager	5	
For the velicity or control validate the	none presence or elements not detected	S does not take recoordinate for	the representativity			This technique does not validate the	none presence of elements not detect	ed if they are below 100ppm. Our t	race		
and traceshilty of the cample and fo	reards that to the Sampling Plan/Proces	lura referenzari above				For the validity or applicability of the	results with commercial ends, Alpha I :	S.A.5 does not take responsibility to	r the representativity		
Moisture	N.A.	6				Moisture	0,21	%			
Radioactivity Sample quantity	NONE F	Sv/h	Produce by Juan Sebastia	an betancourt	AK 60 No. 67ª 80 B. Modelo Norte	Radioactivity	NONE	µSv/h	Produce by Juan Sebastia	n Betancourt	AK 60 No. 67ª 80 B. Modelo Norte
Magnetic Characteristics:	NONE		Analyst		Bogotá D.C.	Sample quantity	30g NONE	-	Analyst		Bogotá D.C.
Notes:			-		Tel. (57-1) 2313518	Notes:	HUNE				Tel. (57-1) 2313518
1. Alpha1 S.A.S reserves the right to co 2. The analytical results present corres	onfirm the authenticity of this report of anal spond EXCLUSIVELY to the sample received	ysis under the policies of confidentia and NOT to any other material of the	ality and property rights of our clients. e same origin.		Móvil 3134549361	1. Alpha1 S.A.S reserves the right to o	onfirm the authenticity of this report of an	alysis under the policies of confident	iality and property rights of our clients.		Móvil 3134549361
3. This report is only for this sample. E	ivery copy of the results on paper will have	an additional 15% cost of the price	of the analysis.		www.alpha1.com.co	3. This report is only for this sample.	ivery copy of the results on paper will have	re an additional 15% cost of the pric	of the analysis.		www.alpha1.com.co
4, The complete or partial reproduction	n of the report is prohibited without written can be processed within 3 months after the	approval of Alpha1 S.A.S. the report has been sent to the clie	ent by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co	4, The complete or partial reproductio	n of the report is prohibited without writte	en approval of Alpha1 S.A.S.	liant by Alaba 1 5 & 5		gerenciaadministrativa@alpha1.com.co
Any inconveniences with the results						at may incommentee with the results	and the processes manned a month's after	the the report time point sould to the c	and all relations where a		

WAY	ELENGTH DISPERSI	VE X-RAY FLUOR	ESCENCE REPORT		Qlpha1	WAV	ELENGTH DISPERS	SIVE X-RAY FLUG	DRESCENCE REPORT		Olphat
Identification	500357763 CANECA 1		Consecutive of Sample:	AUX 26114	Servicios Analíticos	Identification	500357764 CANECA 1		Consecutive of Sample:	AUX 26115	Servicios Analíticos
Sample Type: Origin:	DESCONOCIDO DESCONOCIDO	H S	ampling Plan/Procedure:	CLIENT NONF		Sample Type: Origin:	DESCONOCIDO		Responsible for Sampling Sampling Plan/Procedure:	CLIENT	
		-	Date Received:	02/09/2021		ongin.	22300100200		Date Received:	02/09/2021	
Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Address:	201 RUE NOTRE DAME OUES	ST	bale of hepoir.	15/05/2021		Address:	201 RUE NOTRE DAME OUI	EST	Date of hepoil.	15/05/2021	
City:	MONTREAL		Solicitud Análisis:	SA7735		City:	MONTREAL		Solicitud Análisis:	SA7735	
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN F	PASTILLA	Application:	1.11 AQ 2020		Phone Number: Method of Analysis:	1 4384999621 PRT_GT_01 WDXRE_OMNIAN		Consecutive of Report: Application:	26115-KE AKF 1 11 AQ 2020	
FT-GT-35 Versión 3		OBCEDIATIONS	, approximation:	Página 1 de 1		FT-GT-35 Version 3			Application.	Página 1 de 1	
		ODSERVATIONS						UBSERVATIONS			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Sodium	Na ₂ O	0,03				Sodium	Na ₂ O	0,02		
	Magnesium	MgO	0,04				Aluminum	Al ₂ O ₃	6,10		
	Aluminum	Al ₂ O ₃	9,28				Silicon	SiO ₂	42,91		
	Silicon	SIU2	36,63				Phosphorus	P205	0,09		
	Phosphorus	P205	0,12				Calcium	CaO	0,11		
	Potassium	N2U	0,04				Manganese	MnO	0,71		
	Calcium	CaU	0,15				Titanium	1102	23,61		
	Titopium	TIO	22.30				Iron	Fe ₂ U ₃	17,90		
	Iron	Fe-0-	22,50				Zinc	2nu 7-0	0,03		
	Zirconium	7r0	7.08				Zirconium		8,00		
	Niobium	Nb-Or	0.15				NIODIUM	ND205	0,15		
	Hafnium	HfO	0,15				Thorium	ThO	0,27		
	Loss of Ignition	LOI	N.D.					10	0,05		
	2000 of ignatori						Loss of Ighidon	LOI	N.D.		
	News	REE	1 (m)					REE			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Cerium	LeO2	N.U.				Cerium	CeO ₂	N.D.		
	Lanthanum	Nu ₂ O ₃	0,12				Neodymium	Nd ₂ O ₃	N.D.		
	Praceodymium	Pr ₂ O ₃	N.D.				Lanthanum	La ₂ O ₃	N.D.		
	Samarium	Sm ₂ O ₂	N.D.				Praseodymium	Pr ₂ 0 ₃	N.D.		
	Gadolinium	Gd ₂ O ₂	N.D.				Samarium	Gd_O	N.D.		
	Dysprosium	Dv2O2	N.D.				Gadoinium	0u203	N.D.		
	Yttrium	Y202	0.004				Vttrium	V_0	0.004		
	Ytterbium	Yb203	N.D.				Vtterbium	1203 Yh-O-	0,004 N D		
	Erbium	Er ₂ O ₃	N.D.				Erbium	Fr_0	N.D.		
	Total Rare Earth	055					Total Bare Farth	L1203	N.D.		
	Elements	KEE	0,1				Elements	REE	0,0		
			_								
Observations						Observations					
N.D. : NOT DETECTABLE LOI : (LOSS	OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LOSS	OF IGNTION) 1000°C for 1 hour				
The analysis corresponds to a semi-	quantitative program (max std 5%). 1	The result is based on dried mate	Approved by Jairo Torre	5		The analysis corresponds to a semi-	uantitative program (max std 5%)). The result is based on dried	materi Approved by Jairo Torres		
This technique does not validate the no	one presence of elements not detected	i if they are below 100ppm. Our tra	General Manager			This technique does not validate the no	ne presence of elements not detecte	ed if they are below 100ppm. Ou	General Manager		
For the validity or applicability of the re	sults with commercial ends, Alpha1 S.A	A.S does not take responsibility for	the representativity			For the validity or applicability of the re	aults with commercial ends, Alpha1 S	S.A.S does not take responsibility	y for the representativity		
and traceability of the sample and forw	ards them to the Sampling Plan/Procee	dure referenced above.	-			and traceability of the sample and forw	ands them to the Sampling Plan/Proc	cedure referenced above.			
Radioactivity	NONE µ	ν μSv/h	Produce by Juan Sebasti	an Betancourt	AK 60 No. 6/* 80 B. Modelo Norte	Moisture Radioactivity	0,17 NONE	_% uSv/h	Produce by Juan Sebastia	n Betancourt	AK 60 No. 67 ^a 80 B. Modelo Norte
Sample quantity	35g		Analyst		Bogota D.C. Tel. (57 1) 2312540	Sample quantity	25g	-	Analyst		Bogotá D.C.
Magnetic Characteristics:	NONE				Móvil 3134549361	Magnetic Characteristics:	NONE	_			fel. (57-1) 2313518
1. Apha1 S.A.S reserves the right to con	firm the authenticity of this report of anal	lysis under the policies of confidentia	lity and property rights of our clients.		www.alpha1.com.co	Notes: 1. Alpha1 S.A.S reserves the right to cont	im the authenticity of this report of an	nalysis under the policies of confid	entiality and property rights of our clients		Movil 3134549361
2. The analytical results present correspo 3. This report is only for this samely. But	ond EXCLUSIVELY to the sample received	and NOT to any other material of the	e same origin. of the analysis.		gerenciaadministrativa@alpha1.com.co	2. The analytical results present correspo	nd EXCLUSIVELY to the sample receive	ed and NOT to any other material	of the same origin.		www.aiprial.com.co
4, The complete or partial reproduction of	of the report is prohibited without written	approval of Alpha1 S.A.S.				 This report is only for this sample. Eve The complete or partial reproduction of 	y copy of the results on paper will hav f the report is prohibited without writte	ve an additional 15% cost of the p en approval of Alpha1 S.A.S.	orice of the analysis.		gerene aduministrativa@apria1.com.co
5. Any inconveniences with the results ca 6. The disposal of the countercamples ar	in be processed within 3 months after the of unused samples is done in accordance	e the report has been sent to the cli with what has been approved with t	ent by Alpha1 S.A.S. the client in the request of analysis			5. Any inconveniences with the results ca	be processed within 3 months after t	the the report has been sent to th	e client by Alpha1 S.A.S.		
						6, The disposal of the countersamples an	d unused samples is done in accordan	ice with what has been approved v	with the client in the request of analysis.		

WAV	ELENGTH DISPERS	VE X-RAY FLUOR	ESCENCE REPORT		Servicios Analíticos	W	VELENGTH DISPERS	IVE X-RAY FLUOR	ESCENCE REPORT		
Identification	500357765 CANECA 1		Consecutive of Sample:	AUX 26116		Identificatio	n 500357766 CANECA 1		Consecutive of Sample:	AUX 26117	
Sample Type:	DESCONOCIDO	R	Responsible for Sampling	CLIENT		Sample Type	: Desconocido	F	Responsible for Sampling	CLIENT	
Origin:	DESCONOCIDO	Si	ampling Plan/Procedure: Date Received:	02/09/2021		Origin	: Desconocido	S	ampling Plan/Procedure:	NONE	
Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Clien			Date Received:	02/09/2021	
Contact:	TIFFANY CIFUENTES	_	Date of Report:	15/09/2021		Contac	: TIFFANY CIFUENTES		Date of Report:	15/09/2021	
Address:	201 RUE NOTRE DAME OUES MONTREAL	ol -	Solicitud Análicie:	\$47735		Address	201 RUE NOTRE DAME OUE	ST			
Phone Number:	1 4384999621		Consecutive of Report:	26116-RE XRF		City	r: MONTREAL		Solicitud Análisis:	SA7735	
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020		Method of Analysis	PRT_GT_01_WDYRF_OMNIAN	ραςτιί ι α	Application:	2011/-RE ARF 1 11 AO 2020	
GT-35 Versión 3		OBSERVATIONS		Página 1 de 1		FT-GT-35 Versión 3	. FRI-01-01 WDANI -OPINIAN	FASTILLA	Аррисации.	Página 1 de 1	
	News		(m)					OBSERVATIONS			
	Aluminum	AlsOs	1 94				Name	Element	Composition (%)		
	Silicon	SiO	33.19				Aluminum	Al ₂ O ₃	1,94		
	Phosphorus	P205	0.05				Silicon	SiO ₂	42,20		
	Calcium	CaO	0,12				Phosphorus	P205	0,03		
	Manganese	MnO	1,17				Manganese	MnO	0,97		
	Titanium	TiO ₂	29,31				Titanium	TiO ₂	26,09		
	Iron	Fe ₂ O ₃	28,11				Iron	Fe ₂ O ₃	23,12		
	Zirconium	ZrO ₂	5,59				Zirconium	ZrO ₂	5,20		
	Niobium	Nb ₂ O ₅	0,18				Niobium	Nb ₂ O ₅	0,15		
	Lead	PbO	0,02				Hafnium	HfO ₂	0,19		
	Hafnium	HfO ₂	0,28				Loss of Ignition	LOI	N.D.		
	Loss of Ignition	LOI	N.D.					DEE			
		DEC					N	KEE	0		
	Nama	Floment	Composition (%)				Name	Element	Composition (%)		
	Corium	CoO	Composition (%)				Cerium	CeO ₂	N.D.		
	Needumium	Nd O	N.D.				Neodymium	Nd ₂ U ₃	0,16		
	Lanthanum	12.0	N.D.				Lanthanum	La ₂ O ₃	N.D.		
	Praseodymium	PraOa	N.D.				Praseodymium	Pr ₂ U ₃	N.D.		
	Samarium	Sm ₂ O ₂	N.D.				Samarium	Sm ₂ O ₃	N.D.		
	Gadolinium	Gd ₂ O ₂	N.D.				Gadolinium	Gd ₂ O ₃	N.D.		
	Dysprosium	Dv202	N D				Dysprosium	Dy ₂ O ₃	N.D.		
	Yttrium	Y203	N.D.				Yttrium	Y ₂ O ₃	N.D.		
	Ytterbium	Yb ₂ O ₂	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Erbium	Er ₂ O ₃	N.D.		
	Total Bare Farth						Total Rare Earth	REF	0.2		
	Elements	REE	0,0				Elements		0,2		
									-		
bservations						Observations					
D. : NOT DETECTABLE LOI : (LOSS	S OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LO	SS OF IGNTION) 1000°C for 1 hour				
e analysis corresponds to a semi-	quantitative program (max std 5%)."	The result is based on dried mate	an Approved by Jairo Torre	5		The analysis corresponds to a sen	ni-quantitative program (max std 5%).	The result is based on dried mate	Approved by Jairo Torres		
is technique does not validate the n	one presence of elements not detected	if they are below 100ppm. Our tra	General Manager			This technique does not validate the	none presence of elements not detected	d if they are below 100ppm. Our tra	ice		
r the validity or applicability of the re	esults with commercial ends, Alpha1 S.A	S does not take responsibility for	the representativity			For the validity or applicability of the	results with commercial ends, Alpha1 S.	A.S does not take responsibility for	the representativity		
d traceability of the sample and forw	ards them to the Sampling Plan/Proce	dure referenced above.	-			and traceability of the sample and for Mointure	rwards them to the Sampling Plan/Proce	edure referenced above.	-		
adioactivity	0,28 NONE	o Sv/h	Produce by Juan Sebastia	an Betancourt		Radioactivity	NONE	μSv/h	Produce by Juan Sebastia	n Betancourt	
mple quantity	75g		Analyst		AK 60 No. 67* 80 B. Modelo Norte	Sample quantity	35g		Analyst		
agnetic Characteristics:	NONE				Bogotá D.C.	Magnetic Characteristics:	NONE				AK 60 No. 67* 80 B. Modelo I
tes: Alpha1 S.A.S reserves the right to con	firm the authenticity of this report of ana	ysis under the policies of confidentia	ality and property rights of our clients.		Iel. (57-1) 2313518 Máril 3134549261	Notes: 1. Alpha1 S.A.S reserves the right to o	onfirm the authenticity of this report of an	alysis under the policies of confidentia	lity and property rights of our clients.		Bogota
The analytical results present correspo	and EXCLUSIVELY to the sample received	and NOT to any other material of the	e same origin.		multi 3134349301	2. The analytical results present corre	spond EXICLUSIVELY to the sample received	d and NOT to any other material of th	e same origin.		lel. (5/-1) 231
This report is only for this sample. Eve The complete or partial reproduction of	ry copy of the results on paper will have of the report is prohibited without written	an accitional 15% cost of the price (approval of Alpha1 S.A.S.	of the analysis.		gerenciaadministrativa@alpha1.com.co	3. This report is only for this sample. 4. The complete or partial reproduction	ivery copy of the results on paper will have n of the report is prohibited without writer	e an additional 15% cost of the price n approval of Alpha1 S.A.S.	of the analysis.		MOVII 313454
	in be processed within 3 months after the	the report has been sent to the clie	ent by Alpha1 S.A.S.		a	5. Any inconveniences with the results	can be processed within 3 months after th	the report has been sent to the cli	ent by Alpha1 S.A.S.		www.alpha1.co
Any inconveniences with the results ca	and the second	And the second sec	a second s								

11 00 0		L A-MAI LOOM	ESCENCE REPORT		Clipha	WA	VELENGTH DISPERS	SIVE X-RAY FLUO	RESCENCE REPORT		
Identification	500357767 CANECA 1		Consecutive of Sample:	AUX 26118	Servicios Analíticos	Identification	50035773 CANECA 1		Consecutive of Sample:	AUX 26103	
Sample Type	: DESCONOCIDO	R	esponsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT	
Urigin	: DESCONOCIDO	2	Date Received:	02/09/2021		Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE	
Client	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client			Date Received:	15/09/2021	
Contact	TIFFANY CIFUENTES	,	Date of Report:	15/09/2021		Contact:	TIFFANY CIFUENTES		Date of Report:	15/09/2021	
Address	: ZUT RUE NUTRE DAME UUES : MONTRFAI	I	Solicitud Análisis:	SA7735		Address:	201 RUE NOTRE DAME OUE	ST	ballo of hisport.		
Phone Number	1 4384999621		Consecutive of Report:	26118-RE XRF		City:	MONTREAL		Solicitud Análisis:	SA7735	
Method of Analysis	: PRT-GT-01 WDXRF-OMNIAN P	ASTILLA	Application:	1,11 AQ 2020		Phone Number:	1 4384999621	DACTILLA	Consecutive of Report:	26103-RE XRF	
FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1		Method of Analysis: FT-GT-35 Versión 3	PRI-GI-01 WDXRF-OMNIAN	IPASTILLA	Application:	1,11 AQ 2020 Página 1 de 1	
	Name	Element	Composition (%)					OBSERVATIONS			
	Magnesium	MgO	0,03				Name	Element	Composition (%)		
	Aluminum	Al ₂ O ₃	2,45				Aluminum	Al ₂ O ₃	2,73		
	Silicon	SiO ₂	60,06				Silicon	SiO ₂	91,08		
	Phosphorus	P205	0,07				Phosphorus	P205	0,05		
	Potassium	K ₂ O	0,06				Potassium	K ₂ 0	N.D.		
	Calcium	CaO	0,26				Titanium	TiO	0.37		
	Manganese	MnO	0,65				Iron	Fe ₂ O ₂	4.20		
	Titanium	TiO ₂	16,36				Zirconium	7r0.	0.09		
	Iron	Fe ₂ O ₃	16,76				Nichium	Nh.O.	0.01		
	Zirconium	ZrO ₂	3,09				Tunceter	10205	0,01		
	Niobium	Nb ₂ O ₅	0,10				Tungsten	WO3	0,04		
	Lead	РЬО	0,02				Loss of Ignition	LOI	1,43		
	Hafnium	HfO ₂	0,08					REE			
	Loss of Ignition	LOI	N.D.				Name	Element	Composition (%)		
		REE					Cerium	CeO ₂	N.D.		
	Name	Element	Composition (%)				Neodymium	Nd ₂ O ₃	N.D.		
	Cerium	CeO ₂	N.D.				Lanthanum	La,0,	N.D.		
	Neodymium	Nd_2O_3	N.D.				Praseodymium	Pr ₂ O ₂	N.D.		
	Lanthanum	La ₂ O ₃	N.D.				Samarium	Sm ₂ O ₂	ND		
	Praseodymium	Pr ₂ O ₃	N.D.				Gadolinium	Gd2O2	N D		
	Samarium	Sm ₂ O ₃	N.D.				Dveproeium	Dv ₂ O ₂	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Vttrium	¥-0-	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Vetershime	1203 VL 0	N.D.		
	Yttrium	Y ₂ O ₃	N.D.				Ttterblum	TU203	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.				Erbium	Er ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Total Rare Earth	REE	0.0		
	Total Rare Earth	REE	0,0				Elements				
	Elements								-		
Observations			1			Observations					
N.D. : NOT DETECTABLE LOI : (LC	SS OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour				
The analysis corresponds to a ser	Louentitative program (may std 5%) Ti	e result is based on dried mate	Approved by Jairo Torres			The analysis corresponds to a semi-	-quantitative program (max std 5%).	. The result is based on dried m	teri Approved by Jairo Torres		
This technique does not validate the	none presence of elements pot detected i	they are below 100nnm. Our tra	General Manager			This technique does not validate the n	none presence of elements not detected	ed if they are below 100ppm. Our t	race		
For the unlight or applicability of the	results with commercial ands. Alpha 1 5 8	doer not take remonsibility for	the reconcentrativity			For the validity or applicability of the r	esults with commercial ends, Alpha1 S.	AS does not take responsibility for	or the representativity		
and traceshilty of the cample and fr	reads them to the Complian Disa Process	ro referenced above	and representationally			and traceability of the sample and for	wards them to the Sampling Plan/Proce	edure referenced above.			
Moisture	0,07 %				AK 60 No. 67ª 80 B. Modelo Norte	Moisture Redicectivity	0,12 NONE	% 154b	Produce by Juan Sebastia	n Betancourt	
Radioactivity	NONE µS	w/h	Produce by Juan Sebastia	n Betancourt	Bogotá D.C.	Sample quantity	5350		Analyst		
Sample quantity Magnetic Characteristics:	35g NONE		Analyst		Tel. (57-1) 2313518	Magnetic Characteristics:	NONE	•	Analýst		AK 60 No. 67ª 80 B. Modelo Nor
Notes:					Móvil 3134549361	Notes:			_		Bogotá D.
1. Alpha1 S.A.S reserves the right to co 2. The analytical results present corre-	infirm the authenticity of this report of analy pond EXCLUSIVELY to the sample received a	tis under the policies of confidentia nd NOT to any other material of the	ity and property rights of our clients.		www.alpha1.com.co	1. Alpha1 S.A.S reserves the right to co 2. The analytical results present correct	nfirm the authenticity of this report of an sond EXCLUSIVELY to the sample received	alysis under the policies of confiden ad and NOT to any other material of	tiality and property rights of our clients. the same origin.		Tel. (57-1) 231351
3. This report is only for this sample. E	very copy of the results on paper will have a	additional 15% cost of the price	of the analysis.		gerenciaadministrativa@alpha1.com.co	3. This report is only for this sample. Ev	ery copy of the results on paper will have	e an additional 15% cost of the pric	e of the analysis.		Móvil 313454936
4, The complete or partial reproduction	of the report is prohibited without written a can be processed within 3 months after the	pproval of Alpha1 S.A.S. the report has been sent to the cli-	nt by Alpha1 S.A.S.			4. The complete or partial reproduction	of the report is prohibited without writter	n approval of Alpha1 S.A.S.			www.alpha1.com.
5. Any inconveniences with the results	and a second mount of mounts where the	and the second second do the car				Any inconveniences with the results of	an be processed within 3 months after th	he the report has been sent to the o	Rent by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com/

W	VELENGTH DISPERS	VE X-RAY FLUOR	ESCENCE REPORT		Bervicios Analíticos	WA	ELENGTH DISPERS	IVE X-RAY FLUC	DRESCENCE REPORT		
Identificatio	n 500357774 CANECA 1		Consecutive of Sample:	AUX 26137		Identification	50035775 CANECA 1		Consecutive of Sample:	AUX 26139	
Sample Type	: DESCONOCIDO	F	Responsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT	
Origir	n: DESCONOCIDO	S	ampling Plan/Procedure:	NONE		Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE	
6 1			Date Received:	02/09/2021					Date Received:	02/09/2021	
Clien	t: AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Address	C TIFFAINT CIFUEINTES	T	Date of Report.	15/09/2021		Lontact:	201 DUE NOTRE DAME OUES	त	Date of Report:	15/09/2021	
City	r: MONTREAL	, , , , , , , , , , , , , , , , , , ,	Solicitud Análisis:	SA7735		City	MONTRFAI	,	Solicitud Análisis:	SA7735	
Phone Number	r: 1 4384999621		Consecutive of Report:	26137-RE XRF		Phone Number:	1 4384999621		Consecutive of Report:	26139-RE XRF	
Method of Analysis	s: PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020	
GT-35 Versión 3		OBSERVATIONS		Página 1 de 1		FT-GT-35 Version 3				Página 1 de 1	
		OBSERVATIONS						UDSERVATIONS			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Sodium	Na ₂ O	0,02				Aluminum	Al ₂ O ₃	23,28		
	Magnesium	MgO	0,01				Silicon	SiO ₂	43,51		
	Aluminum	Al ₂ O ₃	8,90				Phosphorus	P205	0.11		
	Silicon	SiO ₂	65,19				Potassium	K-0	0.08		
	Phosphorus	P ₂ O ₅	0.10				Coloium	60	0.09		
	Potassium	K-0	0.18				Titorium	Tio	0,00		
	Calcium	(<u>°</u> 0	0.03				IItanium	1102	0,58		
	Titonium	TiO	0,05				Iron	Fe ₂ O ₃	23,32		
	ritanium	110 ₂	0,50				Zinc	ZnO	0,01		
	Iron	Fe ₂ U ₃	20,50				Zirconium	ZrO ₂	0,09		
	Zirconium	ZrU ₂	0,03				Loss of Ignition	LOI	8,91		
	Loss of Ignition	LOI	4,72					DEE			
		REE					Name	Flement	Composition (%)		
	Name	Element	Composition (%)				Corium	CoO	N D		
	Cerium	CeO ₂	N.D.				Maadumium	NH O	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.				Neodymium	Nu ₂ O ₃	N.D.		
	Lanthanum	La203	N.D.				Lantnanum	La ₂ O ₃	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				Praseodymium	Pr ₂ O ₃	N.D.		
	Samarium	Sm ₂ O ₂	N.D.				Samarium	Sm ₂ O ₃	N.D.		
	Gadalinium	64.0.	N.D.				Gadolinium	Gd ₂ O ₃	N.D.		
	Duonrooium	Dr. 0	N.D.				Dysprosium	Dy ₂ O ₃	N.D.		
	Dysprosium	Uy203	N.D.				Yttrium	Y ₂ O ₃	N.D.		
	rttrium	T2U3	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	ftterbium	TD ₂ O ₃	N.D.				Erbium	Er ₂ 0 ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Total Bare Farth				
	Total Rare Earth	REE	0.0				Elements	REE	0,0		
	Elements		-,-				Liemento				
			-								
servations						Ubservations					
.: NOT DETECTABLE LOI : (LO	DSS OF IGNITION) 1000°C for 1 hour					NULTINUT DETECTABLE LOF: (LOS	or lawnon) <u>1000 ctor i hour</u>				
analysis corresponds to a sen	ni-quantitative program (max std 5%).	The result is based on dried mat	an Approved by Jairo Torres	5		The analysis corresponds to a semi-	quantitative program (max std 5%).	The result is based on dried	materi Approved by Jairo Torres		
s technique does not validate the	a none presence of elements not detected	if they are below 100ppm. Our tri	General Manager			This technique does not validate the n	one presence of elements not detected	d if they are below 100ppm. Ou	ir trace		
the validity or applicability of the	e results with commercial ends. Aloha1 S A	AS does not take responsibility for	the representativity			For the validity or applicability of the r	sults with commercial ends, Alpha1 S.	AS does not take responsibility	for the representativity		
traceability of the sample and fr	prwards them to the Samplino Plan/Proce	dure referenced above.				and traceability of the sample and fon	ards them to the Sampling Plan/Proce	dure referenced above.			
isture	1,12	6				Moisture Redioactivity	1,76	% uSw/h	Produce by Juan Sabartia	Betancourt	
lioactivity	NONE	JSv/h	Produce by Juan Sebastia	in Betancourt		Sample quantity	3760a	p.ar/11	Louise by Juan Jebastia	- Securitori t	
npre quantity	1400g		Analyst		AK 60 No. 67 ^a 80 B. Modelo Norte	Magnetic Characteristics	NONE		Analyst		AK 60 No. 67ª 80 B. M
gnetic characteristics:	NUNE				Bogotá D.C.	Notes:					
Ipha1 S.A.S reserves the right to o	confirm the authenticity of this report of ana	lysis under the policies of confidenti	ality and property rights of our clients.		Tel. (57-1) 2313518	1. Alpha1 S.A.S reserves the right to con	firm the authenticity of this report of ana	lysis under the policies of confid	entiality and property rights of our clients.		Tel. (57-
he analytical results present corre	spond EXCLUSIVELY to the sample received	and NOT to any other material of th	e same origin.		Móvil 3134549361	2. The analytical results present corresp 3. This report is only for this	and EXCLUSIVELY to the sample received	and NOT to any other material of	of the same origin.		Móvil 3
his report is only for this sample. I he complete or partial reproduction	Every copy of the results on paper will have on of the report is prohibited without written	an additional 15% cost of the price approval of Alpha1 5 & 5	of the analysis.		www.alpha1.com.co	4, The complete or partial reproduction	if the report is prohibited without written	approval of Alpha1 S.A.S.	nov or the analysis.		novii J
	can be processed within 3 months after the	the report has been sent to the cli	ent by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co	5. Any inconveniences with the results o	n be processed within 3 months after th	e the report has been sent to th	e client by Alpha1 S.A.S.		aeronciaadministrativa@ak
Any inconveniences with the results						• • • • • • • • • • • • • • • • • • •					uerenciaacintiittistrativa(@al/

		E A-HAT TEOON	SCENCE NEI ONI				VELENUTI DISPER	ATE A-BAT TEOOR	ESCENCE NEI ONT		
Identification	500357776 CANECA 1		Consecutive of Sample:	AUX 26138		Identification	500357777 CANECA 1		Consecutive of Sample:	AUX 26133	
Sample Type:	: DESCONOCIDO	Re	esponsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO		esponsible for Sampling	CLIENT	
Ungin	. DESCONOCIDO	Ja	Date Received:	02/09/2021		ongin	DEDCONOCIDO		Date Received:	02/09/2021	
Client	: AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client	AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Contact	TIFFANY CIFUENTES		Date of Report:	15/09/2021		Contact	TIFFANY CIFUENTES	CCT.	Date of Report:	15/09/2021	
Address	201 RUE NOTRE DAME OUEST MONTREAL		Solicitud Análicie:	\$47735		City	: 201 RUE NOTRE DAME OU	DI	Solicitud Análisis:	SA7735	
Phone Number	: 1 4384999621		Consecutive of Report:	26138-RE XRF		Phone Number	1 4384999621		Consecutive of Report:	26133-RE XRF	
Method of Analysis	PRT-GT-01 WDXRF-OMNIAN P	ASTILLA	Application:	1,11 AQ 2020		Method of Analysis	PRT-GT-01 WDXRF-OMNIA	N PASTILLA	Application:	1,11 AQ 2020	
GT-35 Version 3		OBSERVATIONS		Página 1 de 1		FT-GT-35 Version 3		OBSERVATIONS		Página 1 de 1	
		Observations						5 4	a (11 (M1)		
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Magnesium	MgO	0,01				Aluminum	SiO.	12,00		
	Aluminum	Al ₂ O ₃	7,60				Dhaamhamus	5102	52,55		
	Silicon	SiO ₂	61,60				Phosphorus	P205	0,13		
	Phosphorus	P205	0,17				Potassium	K ₂ O	0,07		
	Potassium	K₂O	0,07				Calcium	CaO	0,09		
	Titanium	TiO ₂	0,29				Titanium	TiO ₂	0,37		
	Iron	Fe ₂ O ₃	25.18				Iron	Fe ₂ O ₃	26,84		
	Zirconium	ZrO ₂	0.05				Zirconium	Zr0 ₂	0,08		
	Loss of Ignition	10	5.01				Lead	РЬО	0,01		
	2000 of Ignition	201	5,01				Loss of Ignition	LOI	7,21		
		REE						REF			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Cerium	CeO ₂	N.D.				Corium	CeO	N D		
	Neodymium	Nd ₂ O ₃	N.D.				Needomium	Nd O	N.D.		
	Lanthanum	La ₂ O ₃	N.D.				Neodymium	Nu ₂ O ₃	N.D.		
	Praseodymium	Pr_2O_3	N.D.				Lanthanum	Ld ₂ U ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Praseodymium	Pr ₂ U ₃	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Samarium	Sm ₂ U ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Gadolinium	Gd ₂ O ₃	N.D.		
	Yttrium	Y203	N.D.				Dysprosium	Dy ₂ O ₃	N.D.		
	Ytterbium	Yb ₂ O ₂	N.D.				Yttrium	Y203	N.D.		
	Frbium	Fr.0.	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Total Pare Farth	2-3					Erbium	Er ₂ O ₃	N.D.		
	Flements	REE	0,0				Total Rare Earth	RFF	0.0		
	Licilianto						Elements		.,.		
servations			1						-		
D. : NOT DETECTABLE LOI : (LOS	55 OF IGNTION) 1000°C for 1 hour					Observations	C OF ICHTON) 100095 fee 1 here				
e analysis corresponds to a semi	i-quantitative program (max std 5%). Th	e result is based on dried mater	Approved by Jairo Torres	5		mut not benechable - cont (co.			Annual her Joine Terror		
technique does not validate the	none presence of elements not detected it	they are below 10000m. Our trac	General Manager			The analysis corresponds to a semi	-quantitative program (max std 5%). The result is based on dried mat	General Manager	·	
the unfide on any firsh the of the	contra with communicational Alaba 1 C A 1	dens ant tale menoral. The fee t				This technique does not validate the	none presence of elements not detect	ed if they are below 100ppm. Our tr	10		
the value of the second and for	nesde skar to the Constant Disc	a selected of the second second				For the validity or applicability of the	results with commercial ends, Alpha1	S.A.S does not take responsibility for	the representativity		
sture	0,93 %	re referenced above.				and traceability of the sample and for Moisture	wards them to the Sampling Plan/Pro 2 30	cedure referenced above.	-		
lioactivity	NONE µS	v/h	Produce by Juan Sebastia	in Betancourt		Radioactivity	NONE	μSv/h	Produce by Juan Sebastia	n Betancourt	
ple quantity	5300g		Analyst			Sample quantity	4860g	-	Analyst		
netic Characteristics:	YES		1		AK 60 No. 67 ^a 80 B. Modelo Norte	Magnetic Characteristics:	NONE	-			AK 60 No. 67* 80 B. Mode
 Ipha1 S.A.S reserves the right to co	onfirm the authenticity of this report of analy.	is under the policies of confidential	ty and property rights of our clients.		Bogotá D.C.	Notes: 1. Alpha1 S.A.S receives the right to co	offrm the authenticity of this report of a	nalysis under the policies of coefficient	ality and property rights of our cliente		Bog
he analytical results present corres	pond EXCLUSIVELY to the sample received a	nd NOT to any other material of the	same origin.		Tel. (57-1) 2313518	2. The analytical results present corresp	pond EXCLUSIVELY to the sample receiv	ed and NOT to any other material of th	e same origin.		Iel. (57-1) 2
his report is only for this sample. Ev	very copy of the results on paper will have a of the report is prohibited without written a	n additional 15% cost of the price of sproval of Alpha1 S.A.S.	the analysis.		Móvil 3134549361	3. This report is only for this sample. Ex	ery copy of the results on paper will ha	ve an additional 15% cost of the price	of the analysis.		Móvil 3134
The complete or partial reproduction		he report has been sent to the clier	t by Alpha1 S.A.S.		www.alpha1.com.co	 a, the complete or partial reproduction Any inconveniences with the results of 	on one report is pronibited without write can be processed within 3 months after	en approval of Alpha 1 5.8.5. the the report has been sent to the ci	ent by Alpha1 S.A.S.		www.alpha1
The complete or partial reproduction Any inconveniences with the results of	can be processed within 5 months after the										and a second sec

WA	VELENGTH DISPERSI	/E X-RAY FLUOR	ESCENCE REPORT			WA	VELENGTH DISPERSI	VE X-RAY FLUO	RESCENCE REPORT	
Identification	500357778 CANECA 1		Consecutive of Sample:	AUX 26135		Identification	500357779 CANECA 2		Consecutive of Sample:	AUX 26129
Sample Type	DESCONOCIDO	F	Responsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin	DESCONOCIDO	S	ampling Plan/Procedure: Date Received:	NONE 02/09/2021		Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
Client	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client	AUXICO RESOURCES		Date Received: Date of Analysis:	15/09/2021
Contact	TIFFANY CIFUENTES		Date of Report:	15/09/2021		Contact:	TIFFANY CIFUENTES		Date of Report:	15/09/2021
Address	201 RUE NOTRE DAME OUEST MONTREAL		Solicitud Análisis:	\$47735		Address:	201 RUE NOTRE DAME OUES	T		
Phone Number	1 4384999621		Consecutive of Report:	26135-RE XRF		City: Phone Number:	1 4384999621		Consecutive of Report:	5A//33 26129_RF XRF
Method of Analysis	PRT-GT-01 WDXRF-OMNIAN P	ASTILLA	Application:	1,11 AQ 2020		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN F	PASTILLA	Application:	1,11 AQ 2020
-35 Versión 3		OBSERVATIONS		Página 1 de 1		FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de
	Name	Element	Composition (%)				N	F 1		
	Aluminum	Al ₂ O ₃	18.33				Name	Element	Composition (%)	
	Silicon	SiO ₂	42.42				Magnesium	MgO	7,02	
	Phosphorus	P ₂ O ₅	0.11				Aiuminum	Al203	7,92	
	Potassium	K ₂ 0	0,06				Dheenherus	3IU2	57,04	
	Calcium	CaO	0,08				Phosphorus	F2U5	0,22	
	Titanium	TiO ₂	0,53				Potassium	N2U	0,10	
	Iron	Fe ₂ O ₃	29,79				i itanium	11U ₂	0,29	
	Zinc	ZnO	0.02				iron	re ₂ U ₃	28,/1	
	Zirconium	ZrO ₂	0,12				Zinc	<u>ZnU</u>	0,02	
	Lead	РЬО	0,02				Zirconium	2r0 ₂	0,04	
	Loss of Ignition	LOI	8.53				Loss of Ignition	LOI	5,66	
								REE		
		REE					Name	Element	Composition (%)	
	Name	Element	Composition (%)				Cerium	CeO,	N.D.	
	Cerium	CeO ₂	N.D.				Neodymium	Nd ₂ O ₂	N.D.	
	Neodymium	Nd ₂ O ₃	N.D.				Lanthanum	La ₂ O ₂	N.D.	
	Lanthanum	La ₂ O ₃	N.D.				Praseodymium	Pr ₂ O ₂	N.D.	
	Praseodymium	Pr ₂ O ₃	N.D.				Samarium	Sm ₂ O ₂	N.D.	
	Samarium	Sm ₂ O ₃	N.D.				Gadolinium	Gd ₂ O ₂	N.D.	
	Gadolinium	Gd ₂ O ₃	N.D.				Dysprosium	Dv ₂ O ₂	N.D.	
	Dysprosium	Dy ₂ U ₃	N.D.				Yttrium	Y202	N D.	
	Yttrium	¥203	N.D.				Ytterbium	YhaOa	N D	
	Ytterbium	TD ₂ U ₃	N.D.				Frhium	Fr-0	N.D.	
	Erbium	Er ₂ O ₃	N.D.				Total Pare Farth	£1,203	11.0.	
	Total Rare Earth	REE	0,0				Elements	REE	0,0	
	Elements									
ervations			1			Observations				
NOT DETECTABLE LOI : (LO	S OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour			
analysis corresponds to a sem	-guantitative program (max std 5%). Th	e result is based on dried mat	Approved by Jairo Torres			The analysis corresponds to a semi-	-quantitative program (max std 5%). 1	The result is based on dried m	natari Approved by Jairo Torres	5
technique does not validate the	none presence of elements not detected it	they are below 100mm. Our tr	General Manager			This technique does not validate the n	none presence of elements not detected	if they are below 100ppm. Our	General Manager	
he validity or applicability of the	esults with commercial ends. Alpha1.S.A.	5 does not take responsibility for	the representativity			For the validity or applicability of the n	results with commercial ends, Alpha1 S.A	LS does not take responsibility	for the representativity	
traceability of the sample and fo	wards them to the Samoling Plan/Proced	ire referenced above	1			and traceability of the sample and fon	wards them to the Sampling Plan/Procee	dure referenced above.		
ture	2,35 %		1			Moisture	2,96 9	6	Deadure hu luce Cabactia	n Ratanaanat
oactivity	NONE µS	w/h	Produce by Juan Sebastian	n Betancourt		Sample quantity	7485.c	lov/h	Produce by Juan Sebastia	in Detancourt
ne quantity netic Characteristics:	NONE		Analyst		AK 60 No. 674 80 B. Modelo Norte	Magnetic Characteristics:	NONE		Analyst	
5.					Bogotá D.C.	Notes:				
oha1 S.A.S reserves the right to co	nfirm the authenticity of this report of analy	sis under the policies of confidentia	ality and property rights of our clients.		Tel. (57-1) 2313518	1. Alpha1 S.A.S reserves the right to con	nfirm the authenticity of this report of anal	ysis under the policies of confide	ntiality and property rights of our clients.	
is report is only for this sample. E	ery copy of the results on paper will have a	additional 15% cost of the price	of the analysis.		MWW alphat com co	3. This report is only for this sample. Ev	ery copy of the results on paper will have	an additional 15% cost of the pri	ice of the analysis.	
	y for this sample. Every copy of the results on paper will have an additional 15% cost of the price of the analysis. partial reproduction of the report is prohibited without written approval of Alpha1 S.A.S.				www.aipita1.com.co	4, The complete or partial reproduction	of the report is prohibited without written	approval of Alpha1 S.A.S.		
complete or partial reproduction	h the results can be processed within 3 months after the the report has been sent to the client by Alpha1 S.A.S.				gerenciaadministrativa@alnha1.com.co	* * · · · · · · · · · · · · · · · · · ·	the second state is seen at the second state is a second state of the second state of		and the second sec	

WA	VELENGTH DISPERS	SIVE X-RAY FLUOR	ESCENCE REPORT		Servicios Analiticos		WAV	ELENGTH DISPERS	SIVE X-RAY FLUG	DRESCENCE REPORT		Servicios Analíticos
Identification Sample Type Origin	500357780 CANECA 1 : DESCONOCIDO : DESCONOCIDO	R Sa	Consecutive of Sample: esponsible for Sampling ampling Plan/Procedure:	AUX 26140 CLIENT NONE			Identification 5 Sample Type: [Origin: [500357781 CANECA 2 DESCONOCIDO DESCONOCIDO		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure:	AUX 26132 CLIENT NONE	
Client	: AUXICO RESOURCES : TIFFANY CIFUENTES		Date of Analysis: Date of Report:	15/09/2021			Client: / Contact: 1	AUXICO RESOURCES TIFFANY CIFUENTES		Date of Analysis: Date of Report:	15/09/2021 15/09/2021	
Address	201 RUE NOTRE DAME OU	EST	Collisional Aurólisian	C17775			Address: a	201 RUE NOTRE DAME OUI	EST	Calificitud Auditaiau	647725	
Phone Number	: 1 4384999621		Consecutive of Report:	26140-RE XRF		Ph	hone Number: 1	1 4384999621		Consecutive of Report:	26132-RE XRF	
Method of Analysis	: PRT-GT-01 WDXRF-OMNIAN	N PASTILLA	Application:	1,11 AQ 2020		Metho	d of Analysis: F	PRT-GT-01 WDXRF-OMNIAN	N PASTILLA	Application:	1,11 AQ 2020	
FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1		PT-GT-35 Version			OBSERVATIONS		Página 1 de 1	
	Name	Element	Composition (%)					Name	Element	Composition (%)		
	Aluminum	Al ₂ O ₃	20,46					Sodium	Na ₂ O	0,03		
	Silicon	SiO ₂	36,70					Magnesium	MgO	0,03		
	Phosphorus	P205	0,14					Aluminum	Al ₂ O ₃	10,92		
	Potassium	K ₂ O	0,03				L	Silicon	SiO ₂	49,52		
	Calcium	CaO	0,08				Ļ	Phosphorus	P205	0,19		
	Manganese	MnO	0,14				Ļ	Potassium	K ₂ 0	0,38		
	Titanium	TiOz	0,52					Calcium	CaO	0,06		
	Iron	Fe ₂ O ₃	32,05					Titanium	TiO ₂	0,30		
	Zinc	ZnO	0,02					Iron	Fe ₂ O ₃	32,62		
	Zirconium	ZrO2	0,07					Zirconium	Zr0 ₂	0,05		
	Loss of Ignition	LOI	9,77				L	Loss of Ignition	LOI	5,92		
		REE					Г		REE			
	Name	Element	Composition (%)				1	Name	Element	Composition (%)		
	Cerium	CeO ₂	N.D.					Cerium	CeO ₂	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.				F	Neodymium	Nd ₂ O ₃	N.D.		
	Lanthanum	La ₂ O ₃	N.D.				ľ	Lanthanum	La ₂ 0 ₃	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				ľ	Praseodymium	Pr ₂ O ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.					Samarium	Sm ₂ O ₃	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.					Gadolinium	Gd ₂ O ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.					Dysprosium	Dy ₂ O ₃	N.D.		
	Yttrium	Y ₂ O ₃	N.D.					Yttrium	Y ₂ O ₃	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.					Ytterbium	Yb ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.					Erbium	Er ₂ O ₃	N.D.		
	Total Rare Earth	REE	0.0				F	Total Rare Earth	DEE	0.0		
	Elements	nee	0,0				L	Elements	REE	0,0		
Observations			1			a <i>i</i>						
N.D. : NOT DETECTABLE LOI : (LO	SS OF IGNTION) 1000°C for 1 hour					N.D NOT DETEC		OF IGNTION) 1000°C for 1 hour				
The analysis corresponds to a sem	i-quantitative program (max std 5%)). The result is based on dried mate	Approved by Jairo Torres			The evolution		unatitation processor (man and EST)	The could is based on dried	Approved by Jairo Torres		
This technique does not validate the	none presence of elements not detect	ed if they are below 100mm. Our tra	General Manager			The analysis corre	responds to a semi-qu	danutative program (max std 576)	. The result is based on dried	General Manager	,	
For the validity or applicability of the	results with commercial ends. Aloha1 !	SAS does not take responsibility for t	the representativity			For the velicity or	analizability of the sor	with commercial ands Alaba1	S A S does not take responsible	v for the representativity		
and traceability of the sample and fo	nwards them to the Sampling Plan/Pro	cedure referenced above.				and traceshilty of	f the commis and finance	unis them to the Samolino Plan (Door	redure referenced show	y ron and rough esterilativity		
Moisture Redisactivity	3,28	% 115u/b	Produce by luon Sebastia	n Betancourt		Moisture	the party of and full the	1,77	%	Des dura h		
Sample quantity	5320a	- Postu	Anshut	in potancount	AK 60 No. 67ª 80 B. Modelo Norto	Radioactivity Sample crossition		NONE 6550a	_h/w/#	Produce by Juan Sebastia	n betancourt	AK CON- CTA OO D M- L L N
Magnetic Characteristics:	NONE	-	rendlyst		Romotá D C	Magnetic Charact	teristics:	NONE	-	Analyst		AK 60 NO. 67° 80 B. Modelo Norte
Notes:			-		Tel. (57-1) 2313518	Notes:						50g0ta D.L.
2. The analytical results present corres	emm de autoenticity of this report of a pond EXCLUSIVELY to the sample receive	narysis under the policies of confidential ed and NOT to any other material of the	my and property rights of our clients. same origin.		Móvil 3134549361	1. Alpha1 S.A.S res 2. The analytical res	serves the right to confi sults present correspor	rm the authenticity of this report of ar nd EXCLUSIVELY to the sample receive	nalysis under the policies of confid ed and NOT to any other material	lentiality and property rights of our clients. of the same origin.		Mávil 3124549261
3. This report is only for this sample. E	very copy of the results on paper will have	ve an additional 15% cost of the price o	of the analysis.		www.alpha1.com.co	3. This report is on	ly for this sample. Every	y copy of the results on paper will hav	ve an additional 15% cost of the p	orice of the analysis.		www.alpha1.com.co
5. Any inconveniences with the results	can be processed within 3 months after	the the report has been sent to the clie	nt by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co	4, The complete or 5. Any inconvenient	r partial reproduction of ices with the results can	the report is prohibited without writte be processed within 3 months after t	en approval of Alpha1 S.A.S. the the report has been sent to th	e client by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co
6, The disposal of the countersamples	and unused samples is done in accordar	nce with what has been approved with th	he client in the request of analysis.			6, The disposal of t	the countersamples and	d unused samples is done in accordan	nce with what has been approved i	with the client in the request of analysis.		
						1						
						1						

WA	VELENGTH DISPERS	IVE A-KAT FLUUK	ESCENCE REPORT		Servicios Analíticos	WA	VELENGIN DISPER	SIVE A-RAT FLUG	JNESCENCE NEFUNI		Servicios Analíti
Identification	500357782 CANECA 2		Consecutive of Sample:	AUX 26131		Identification	500357783 CANECA 2		Consecutive of Sample:	AUX 26130	 Servicios Abaliti
Sample Type:	DESCONOCIDO	F	esponsible for Sampling	CLIENT		Sample Type	: DESCONOCIDO		Responsible for Sampling	CLIENT	
Origin:	DESCONOCIDO	S	ampling Plan/Procedure:	NONE 02/00/2021		Origin	: DESCONOCIDO		Sampling Plan/Procedure:	02/09/2021	
Client	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client	: AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Contact	TIFFANY CIFUENTES		Date of Report:	15/09/2021		Contact	: TIFFANY CIFUENTES		Date of Report:	15/09/2021	
Address:	201 RUE NOTRE DAME OUES	ST				Address	201 RUE NOTRE DAME OU	IEST	C. P. De J. A. (P. J.	64770F	
City: Phone Number	MONTREAL 1 A29 40006 21		Solicitud Análisis:	SA7735		Phone Number	T MUNTREAL T 1 4384999621		Consecutive of Report:	5A//35 26130-RF XRF	
Method of Analysis:	PRT-GT-01 WDXRE-OMNIAN I	PASTILLA	Application:	1.11 AQ 2020		Method of Analysis	: PRT-GT-01 WDXRF-OMNIA	N PASTILLA	Application:	1,11 AQ 2020	
-GT-35 Versión 3		THOMEON	Application.	Página 1 de 1		FT-GT-35 Versión 3				Página 1 de 1	
		OBSERVATIONS						UBSERVATIONS			
1	Name	Element	Composition (%)				Name	Element	Composition (%)		
I	Sodium	Na ₂ O	0.04				Sodium	Na ₂ O	0.23		
I	Magnesium	MaQ	0,04				Magnesium	MaO	0.06		
I	Magnesium	MgO	0,05				Aluminum	AlsOs	19.48		
I	Aluminum	Al203	23,35				Silicon	SiO	65.91		
l	Silicon	5/U ₂	47,57				Phoenhorue	P.O.	0.11		
	Phosphorus	P205	0,21				Potoscium	K.O	6.18		
l	Potassium	K ₂ O	2,39				Coloium	120 CaO	0,10		
l	Calcium	CaO	0,08				Calcium	Cau	0,27		
l	Manganese	MnO	0,03				Manganese	MnO	0,09		
l	Titanium	TiO ₂	0,91				Titanium	1IU ₂	0,34		
l	Iron	Fe ₂ O ₃	16,35				Iron	Fe ₂ O ₃	3,51		
l	Zirconium	Zr0 ₂	0,11				Zinc	ZnO	0,01		
	Loss of Ignition	LOI	8.85				Zirconium	ZrO ₂	0,06		
	Loop of Ignatori						Loss of Ignition	LOI	3,78		
		REE						REE			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
I	Cerium	CeO ₂	N.D.				Cerium	CeOa	N D		
I	Neodymium	Nd ₂ O ₃	N.D.				Neodumium	Nd.O	N.D.		
I	Lanthanum	La_2O_3	N.D.				lanthanum	10203	N.D.		
I	Praseodymium	Pr ₂ O ₃	N.D.				Lanmanum	Ld2U3	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Praseodymium	Pr ₂ U ₃	N.D.		
I	Gadolinium	Gd ₂ O ₃	N.D.				Samarium	Sm ₂ U ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Gadolinium	Gd ₂ U ₃	N.D.		
	Yttrium	Y202	N.D.				Dysprosium	Dy ₂ O ₃	N.D.		
	Ytterbium	Yb ₂ O ₂	N.D.				Yttrium	Y ₂ O ₃	N.D.		
	Erbium	Fr 0	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Tatal Dava Fasth	L1203	N.D.				Erbium	Er ₂ O ₃	N.D.		
	Total Rare Earth	REE	0,0				Total Rare Earth	REF	0.0		
	Liements						Elements	nee	0,0		
			-								
Observations						Observations					
N.D. : NOT DETECTABLE LOI : (LOS	5 OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LO	SS OF IGNTION) 1000°C for 1 hour				
The analysis corresponds to a semi-	quantitative program (max std 5%).	The result is based on dried mate	Approved by Jairo Torres			The analysis corresponds to a semi	i-quantitative program (max std 5%). The result is based on dried	materi Approved by Jairo Torres	5	
This technique does not validate the r	one presence of elements not detected	d if they are below 100ppm. Our tra	General Manager			This technique does not validate the	none presence of elements not clater	ted if they are below 100nom. Or	General Manager		
for the validity or applicability of the r	esults with commercial ends, Alpha1 S./	AS does not take responsibility for	the representativity			For the unlight or employed the	marks with commercial and - Alaha 1	S & S does not take record 32	of our these reconceptions in the		
and traceability of the sample and for	ards them to the Sampling Plan/Proce	dure referenced above.				of the values of approaching of the	results with commercial ends, Alpha I	sons uses not take responsibility	y on the representativity		
floisture	1.76	%		. I star sout		Moisture	1,34	_%			
sacioactivity	NONE I	μλνζμ	Produce by Juan Sebastia	n betancourt	AK 60 No. 67ª 80 B. Modelo Norte	Radioactivity	NONE	μSw/h	Produce by Juan Sebastia	in Betancourt	AK 60 No. 67ª 80 B. Modelo Nor
Jampie quantity Magnatic Charactanistics:	1450g NONE		Analyst		Bogotá D.C.	Sample quantity	2440g	_	Analyst		Bogotá D.
fotes:	NUNC		-		Tel. (57-1) 2313518	Magnetic Characteristics:	NONE				Tel. (57-1) 23135
I. Alpha1 S.A.S reserves the right to cor	firm the authenticity of this report of anal	lysis under the policies of confidentia	ality and property rights of our clients.		Móvil 3134549361	1. Alpha1 S.A.S reserves the right to co	onfirm the authenticity of this report of :	analysis under the policies of confic	lentiality and property rights of our clients.		Móvil 313454930
J. The analytical results present corresp 3. This report is only for this seconds for	ond EXCLUSIVELY to the sample received	and NOT to any other material of the	e same origin. of the analysis		www.alpha1.com.co	2. The analytical results present corres	spond EXCLUSIVELY to the sample recei	ed and NOT to any other material	of the same origin.		www.alpha1.com.
4, The complete or partial reproduction	of the report is prohibited without written	approval of Alpha1 S.A.S.	vi une amalysis.		perenciaadministrativa@alpha1.com.co	 This report is only for this sample. En The complete or partial reproduction 	ivery copy of the results on paper will have n of the report is prohibited without write	ave an additional 15% cost of the p ten approval of Alpha1 S.A.S.	rice of the analysis.		gerenciaadministrativa@alpha1.com.
5. Any inconveniences with the results c	an be processed within 3 months after the	e the report has been sent to the cli	ent by Alpha1 S.A.S.			5. Any inconveniences with the results	can be processed within 3 months after	the the report has been sent to th	e client by Alpha1 S.A.S.		
i, The disposal of the countersamples a	nd unused samples is done in accordance	e with what has been approved with t	he client in the request of analysis.			6, The disposal of the countersamples	and unused samples is done in accorda	nce with what has been approved i	eith the client in the request of analysis.		
i						L					

WA	VELENGTH DISPERS	IVE X-RAY FLUOR	RESCENCE REPORT			WA	ELENGTH DISPERSI	VE X-RAY FLU	ORESCENCE REPORT		
Identification	500357784 CANECA 1		Consecutive of Sample:	AUX 26124		Identification	500357785 CANECA 2		Consecutive of Sample:	AUX 26127	
Sample Type: Origin:	DESCONOCIDO		Responsible for Sampling Sampling Plan/Procedure:		s.	Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT	
origin.	DESCONOCIDO		Date Received:	02/09/2021	0:	Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE 02/09/2021	
Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Address:	201 RUE NOTRE DAME OUE	ST	bate of hepoit.	15/05/2021		Contact:	TIFFANY CIFUENTES	-	Date of Report:	15/09/2021	
City: Phone Number:	MONTREAL		Solicitud Análisis:	SA7735		Address: City:	201 RUE NOTRE DAME QUES MONTREAL		Solicitud Análisis:	SA7735	
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020		Phone Number:	1 4384999621		Consecutive of Report:	26127-RE XRF	
FT-GT-35 Versión 3		ORSERVATIONS		Página 1 de 1		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN F	PASTILLA	Application:	1,11 AQ 2020	
		OBJERVATIONS				FI-GI-3D Version 3		OBSERVATIONS		Pagina 1 de 1	
	Name	Element	Composition (%)				Nama	Element	Composition (%)		
	Sodium	Na ₂ U	N.D.				Magnosium	MaO			
	Aluminum	MgU AL-O	N.D. 6 54				Aluminum	AL O	19.72		
	Silicon	SiO ₂	89.53				Silicon	50	17,72		
	Phosphorus	P-0-	0.02				Dheenherus	30 ₂	0.22		
	Potassium	K-0	N.D.				Phosphorus	F205	0,22		
	Calcium	CaO	N.D.				FOLASSIUIII	K20	0,24		
	Manganese	MnO	N.D.				Itanium	Fo O	0,70		
	Titanium	TiO ₂	0,11				Iron	re ₂ U ₃	51,24		
	Iron	Fe ₂ O ₃	1,57					2102	0,10		
	Zinc	ZnO	N.D.				Loss of Ignition	LUI	10,02		
	Zirconium	Zr0 ₂	0,03					REE			
	Niobium	Nb ₂ O ₅	N.D.				Name	Element	Composition (%)		
	Tantalum	Ta ₂ O ₅	N.D.				Cerium	CeO ₂	N.D.		
	Tungsten	WO ₃	0,07				Neodymium	Nd ₂ O ₃	N.D.		
	Lead	РЬО	N.D.				Lanthanum	La ₂ O ₃	N.D.		
	Hatnium	HIU ₂	N.D.				Praseodymium	Pr ₂ O ₃	N.D.		
	Inorium		N.D.				Samarium	Sm ₂ O ₃	N.D.		
	Loss of Ignition	101	2.13				Gadolinium	Gd ₂ O ₃	N.D.		
	Loss et ignuen		2115				Dysprosium	Dy ₂ O ₃	N.D.		
		REE					Yttrium	Y ₂ O ₃	N.D.		
	Name	Element	Composition (%)				Ytterbium	Yb ₂ O ₃	N.D.		
	Cerium	Leo2	N.D.				Erbium	Er ₂ 0 ₃	N.D.		
	Lanthanum	N0203	N.D.				Total Rare Earth	DEE			
	Proseodymium	Pr ₂ O ₃	N.D.				Elements	KEE	0,0		
	Samarium	Sm ₂ O ₂	N.D.								
	Gadolinium	Gd ₂ O ₃	N.D.			Observations					
	Dysprosium	Dy ₂ O ₃	N.D.			N.D. : NOT DETECTABLE LOI : (LOSS	5 OF IGNTION) 1000°C for 1 hour				
	Yttrium	Y ₂ O ₃	N.D.			The analysis corresponds to a semi-	quantitative program (max std 5%) 1	The result is based on dried	materi Approved by Jairo Torres		
	Ytterbium	Yb ₂ O ₃	N.D.			This technique does not validate the n	one presence of elements not detected	if they are below 100nnm. O	General Manager		
	Erbium	Er ₂ O ₃	N.D.			For the validity or applicability of the re	esults with commercial ends. Alpha1 S.A	S does not take responsibilit	ty for the representativity		
	Total Rare Earth	REF	0.0			and traceability of the sample and form	ands them to the Sampling Plan/Proced	ture referenced above.			
	Elements	nee	0,0			Moisture	1,54 9	6			
			-			Kadioactivity Sample quantity	NONE µ	íSv/h	Produce by Juan Sebastia	n Betancourt	
Observations						Magnetic Characteristics:	YES		Analyst		
N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour			AK 60 No. 67ª 80 B. Modelo Nort	e	Notes:					AN 60 NO. 67" 80 B. Modelo Norle
The analysis corresponds to a semi-	quantitative program (max std 5%).	The result is based on dried ma	teri Approved by Jairo Torres General Manager	Bogotá D.O	с.	1. Alpha1 S.A.S reserves the right to con 2. The analytical results present correspondences	firm the authenticity of this report of anal and EXCLUSIVELY to the sample received	ysis under the policies of confi and NOT to any other material	dentiality and property rights of our clients. of the same origin.		Dogota D.C. Tol. (57 1) 2212519
This technique does not validate the n	one presence of elements not detecte	d if they are below 100ppm. Our t	irace	Tel. (57-1) 231351	8	3. This report is only for this sample. Eve	ery copy of the results on paper will have :	an additional 15% cost of the	price of the analysis.		Móvil 2124549261
For the validity or applicability of the n	esults with commercial ends, Alpha1 S	A.S does not take responsibility fo	or the representativity	Móvil 313454936	1	4, The complete or partial reproduction of 5 Any incompaniences with the results on	of the report is prohibited without written	approval of Alpha1 S.A.S.	ha cliant hu âlnhai 5.8 5		www.alpha1.com.co
and traceability of the sample and fon Moisture	varos them to the Sampling Plan/Proce 0,38	soure referenced above.		www.alpha1.com.c	0	6, The disposal of the countersamples ar	nd unused samples is done in accordance	with what has been approved	with the client in the request of analysis.		gerenciaadministrativa@alpha1.com.co
Radioactivity	NONE	µSv/h	Produce by Juan Sebastian B	Betancourt gerenciaadministrativa@alpha1.com.c	0						
Magnetic Characteristics:	NONE		Analyst								
Notes:											
1. Alpha1 S.A.S reserves the right to cor 2. The analytical results present corresp	nfirm the authenticity of this report of an ond EXCLUSIVELY to the sample receive	alysis under the policies of confident d and NOT to any other material of t	tiality and property rights of our clients. the same origin.								
					- 1						

WA	VELENGTH DISPERS	VE X-RAY FLU	DRESCENCE REPORT				WAVELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT		Cipia
Identificatio Sample Type Origin	 500357786 CANECA 2 DESCONOCIDO DESCONOCIDO 		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure:	AUX 26126 CLIENT NONE		Identifica Sample T Or	ation 500357787 CANECA 2 'ype: DESCONOCIDO igin: DESCONOCIDO		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26125 CLIENT NONE 02/09/2021	Servicios Analitic
Client Contact	: AUXICO RESOURCES : TIFFANY CIFUENTES	_	Date of Analysis: Date of Report:	15/09/2021 15/09/2021		Ci Con Addi	ient: AUXICO RESOURCES itact: TIFFANY CIFUENTES ress: 201 RUE NOTRE DAME OU	IEST	Date of Analysis: Date of Report:	15/09/2021 15/09/2021	
Address	: 201 RUE NOTRE DAME OUES : MONTREAL	d	Solicitud Análisis:	SA7735		Phone Num	City: MONTREAL hber: 1 4384999621		Solicitud Análisis: Consecutive of Report:	SA7735 26125-RE XRF	
Phone Number	: 1 4384999621		Consecutive of Report:	26126-RE XRF		Method of Anal	ysis: PRT-GT-01 WDXRF-OMNIA	N PASTILLA	Application:	1,11 AQ 2020	
FT-GT-35 Versión 3	C PRI-GI-UT WDXRF-UMNIAN I	PASTILLA	Application:	1,11 AQ 2020 Página 1 de 1		FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1	
		OBSERVATIONS					Name	Element	Composition (%)		
	Name	Element	Composition (%)				Sodium	Na ₂ O	0.17		
	Magnesium	MgO	0,02				Magnesium	MgO	0,04		
	Aluminum	Al ₂ O ₃	23,33				Aluminum	Al ₂ O ₃	30,57		
	Silicon	SiO ₂	37,78				Silicon	SiO ₂	44,95		
	Phosphorus	P ₂ O ₅	0,21				Phosphorus	P205	0,22		
	Potassium	K ₂ O	0,21				Potassium	K ₂ O	1,90		
	Calcium	CaO	0,13				Calcium	CaO	0,32		
	Titanium	TiO ₂	1,13				Titanium	TiO ₂	0,59		
	Iron	Fe ₂ O ₃	26,93				Iron	Fe ₂ O ₃	11,57		
	Zirconium	ZrO ₂	0,15				Zirconium	Zr0 ₂	0,07		
	Loss of Ignition	LOI	10,05				Niobium	ND ₂ U ₅	0,04		
		REE					Loss of Ignition	W03	9.54		
	Name	Element	Composition (%)				Loss of Ignition	EOI	5,54		
	Cerium	CeO ₂	N.D.					REE			
	Neodymium	Nd ₂ O ₃	N.D.				Name	Element	Composition (%)		
	Lanthanum	La203	N.D.				Cerium	CeO ₂	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				Neodymium	Nd ₂ U ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Bracoodymium	Pr O	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Samarium	Sm_0	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Gadolinium	Gd_Q_	N.D.		
	Yttrium	Y ₂ O ₃	N.D.				Dysprosium	Dv203	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.				Yttrium	Y ₂ O ₃	0.0		
	Erbium	Er ₂ O ₃	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Total Rare Earth	DEE					Erbium	Er ₂ O ₃	N.D.		
	Elements	REE	0,0				Total Rare Earth	055			
							Elements	REE	0,0		
Observations									_		
N.D. : NOT DETECTABLE LOI : (LO	SS OF IGNTION) 1000°C for 1 hour					Observations					
The analysis corresponds to a sen	i-quantitative program (max std 5%). '	The result is based on dried	materi Approved by Jairo Torres			N.D. : NOT DETECTABLE LOI	: (LOSS OF IGNTION) 1000*C for 1 hour				
This technique does not validate the	none presence of elements not detected	if they are below 100ppm. O	ur trace			The analysis corresponds to a	a semi-quantitative program (max std 5%). The result is based on dried m	ateri Approved by Jairo Torres		
For the validity or applicability of the	results with commercial ends, Alpha1 SJ	S does not take responsibilit	y for the representativity			This technique does not validat	te the none presence of elements not detec	ted if they are below 100ppm. Our	trace		
and traceability of the sample and fo	rwards them to the Sampling Plan/Proce	ture referenced above.				For the validity or applicability of	of the results with commercial ends, Alpha1	S.A.S does not take responsibility f	br the representativity		
Moisture Radioactivity	0,07 NONE	6 Su/h	Produce by Juan Sebastia	n Betancourt		and traceability of the sample a Moisture	ind forwards them to the Sampling Plan/Pro 1,14	scedure referenced above.	-		
Sample quantity	1130g		Analyst			Radioactivity	NONE	µSv/h	Produce by Juan Sebastia	n Betancourt	AK 60 No. 67ª 80 B. Modelo Nort
Magnetic Characteristics:	NONE				AK 60 No. 67 ^a 80 B. Modelo Norte	Sample quantity	1580g	-	Analyst		Bogotá D.C
Notes: 1. Alpha1.5.4.5 reserves the right to c	onfirm the authenticity of this report of seal	usis under the policies of confi	ientiality and property rights of our cliente		Bogotá D.C.	Magnetic unaracteristics: Notes:	NUNE				Tel. (57-1) 231351
2. The analytical results present corre-	spond EXCLUSIVELY to the sample received	and NOT to any other material	of the same origin.		Iel. (5/-1) 2313518	1. Alpha1 S.A.S reserves the righ	t to confirm the authenticity of this report of a	malysis under the policies of confider	ntiality and property rights of our clients.		MOVII 313454936
3. This report is only for this sample. I	very copy of the results on paper will have	an additional 15% cost of the p	price of the analysis.		Movil 3134549361	 This report is only for this same 	ple. Every copy of the results on paper will ha	we an additional 15% cost of the pri	ce of the analysis.		www.aipfia1.com.c
5. Any inconveniences with the results	can be processed within 3 months after the	the report has been sent to th	e client by Alpha1 S.A.S.		www.aipha1.com.co	4, The complete or partial reprod	duction of the report is prohibited without writ	ten approval of Alpha1 S.A.S.	riant by Alaba 1 5 & 5		geterrenden mit strattvage appla i 10011.0
	and unused samples is done in accordance	with what has been approved	with the client in the request of analysis.		gerenciaadministrativa@aipna1.com.co	6 The discount of the counterers	make and unused exercise is done in accord	are and report may seen selft to the	the class in the request of ambound		

WA	VELENGTH DISPERSIVE X-RA	Y FLUORESCENCE REPORT	Servicios Analiticos	WA	WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT				Servicios Analítico	
Identificatior Sample Type Origin	500357789 CANECA 1 : DESCONOCIDO : DESCONOCIDO	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26134 CLIENT NONE 02/09/2021		Identification Sample Type: Origin:	500357790 CANECA 2 DESCONOCIDO DESCONOCIDO	l S	Consecutive of Sample: Responsible for Sampling iampling Plan/Procedure: Date Received:	AUX 26122 CLIENT NONE 02/09/2021	
Client Contact Address	: AUXICO RESOURCES : TIFFANY CIFUENTES : 201 RUE NOTRE DAME OUEST	Date of Analysis: Date of Report:	15/09/2021 15/09/2021		Client: Contact: Address:	AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OUI	est	Date of Analysis: Date of Report:	15/09/2021 15/09/2021	
Phone Number	: 1 4384999621	Consecutive of Report:	26134-RE XRF		City: Phone Number:	MONTREAL 1 4384999621		Solicitud Análisis: Consecutive of Report:	SA7735 26122-RE XRF	
PT-GT-35 Versión 3	PRI-01-01 WDARF-OPINIAN PASTILLA	Аррисацон.	Página 1 de 1		Method of Analysis: FT-GT-35 Versión 3	: PRI-GI-01 WDXRF-OMNIAN	N PASTILLA	Application:	1,11 AQ 2020 Página 1 de 1	
	OBSERV	ATIONS					OBSERVATIONS			
	Name Eler	ment Composition (%)				Name	Element	Composition (%)		
	Sodium Na	a ₂ 0 0,10				Sodium	Na ₂ O	0,04		
	Magnesium M	1g0 0,07				Magnesium	MgO	0,03		
	Aluminum Al	1203 17,70				Aluminum	Al ₂ O ₃	13,82		
	Dhoophorup P	0 0.12				Silicon	SIO ₂	33,73		
	Priospilorus 1	205 0,12				Phosphorus	P205	0,09		
	Titanium Ti	iO ₂ 0,78				Titopium	K ₂ U	0,66		
		-0, 23 59				Intanium		0,49		
	Zirconium Zr	r0, 0.04				Tiroonium	re ₂ 0 ₃	44,52		
	Uranium	U N.D.				Zirconium	2102	0,05		
	Loss of Ignition L	.01 6.07	÷			Leau	LOL	6 38		
						E033 of Ignition	EOI	0,50		
	Name Fler	ment Composition (%)				Marrie	REE	(m)		
	Cerium Ce	eO ₂ N D				Name	Element	Composition (%)		
	Neodymium Nd	d ₂ O ₂ N.D.				Needumium	Nd-O	N.D.		
	Lanthanum La	a ₂ O ₃ N.D.				Lanthanum		N.D.		
	Praseodymium Pr	r ₂ O ₃ N.D.				Praseodymium	Pr-On	N.D.		
	Samarium Sm	n ₂ O ₃ N.D.				Samarium	Sm ₂ O ₂	N.D.		
	Gadolinium Gd	d ₂ O ₃ N.D.				Gadolinium	Gd ₂ O ₂	N D		
	Dysprosium Dy	y ₂ O ₃ N.D.				Dysprosium	Dv203	N.D.		
	Yttrium Y ₂	203 N.D.				Yttrium	Y203	N.D.		
	Ytterbium Yb	b ₂ O ₃ N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Erbium Er	r ₂ O ₃ N.D.				Erbium	Er ₂ O ₃	N.D.		
	Total Rare Earth	RE 0.0				Total Rare Earth	DEE	0.0		
	Elements					Elements	NEE	0,0		
0								-		
N.D. : NOT DETECTABLE LOI : (LO)	55 OF IGNTION) 1000°C for 1 hour				Observations					
The analysis corresponds to a sem	-quantitative program (max std 5%). The result is bas	sed on dried materi Approved by Jairo Torre	s		N.D NOT DETECTABLE _ EDT . (LOS	is or idention) to or clier i neur		Approved by Joire Terre		
This technique does not validate the	none presence of elements not detected if they are below	General Manager			The analysis corresponds to a semi-	-quantitative program (max std 5%)	. The result is based on dried mat	General Manager		
For the validity or applicability of the	results with commercial ends. Aloha1 S.A.S does not take	e responsibility for the representativity			This technique does not validate the r	none presence of elements not detect	ed if they are below 100ppm. Our th	act		
and traceability of the sample and for	wards them to the Sampling Plan/Procedure referenced a	above.			For the validity or applicability of the r	results with commercial ends, Alpha I is	S.A.S does not take responsibility for	r the representativity		
Moisture	2,06 %	Produce by Juan Sebasti	an Betancourt		Moisture	1,74	%			
Sample quantity	2505g	Anshert	an Detancourt	AK 60 No. 67ª 80 B. Modelo Norte	Radioactivity	NONE	_µSv/h	Produce by Juan Sebastia	n Betancourt	
Magnetic Characteristics:	YES	mayst		Bogotá D C	Sample quantity Magnetic Characteristics:	3785g NONE	-	Analyst		AK 60 No. 67 ^a 80 B. Modelo Norte
Notes:	offers the authenticity of this report of analysis under the end	licies of confidentiality and accounts sinks of our -f		Tel. (57-1) 2313518	Notes:					Bogota D.C.
2. The analytical results present corres	pond EXCLUSIVELY to the sample received and NOT to any of	other material of the same origin.		Móvil 3134549361	1. Alpha1 S.A.S reserves the right to co 2. The analytical results present corresp	nfirm the authenticity of this report of an sond EXCLUSIVELY to the sample receive	nalysis under the policies of confidenti ed and NOT to any other material of th	ality and property rights of our clients. te same origin.		Móvil 3134549361
3. This report is only for this sample. E 4. The complete or partial reproduction	rery copy of the results on paper will have an additional 15% of the report is prohibited without written approval of Aloha	% cost of the price of the analysis. a1 S.A.S.		www.alpha1.com.co	3. This report is only for this sample. Ev	ery copy of the results on paper will hav	e an additional 15% cost of the price	of the analysis.		www.alpha1.com.co
	the successful within 2 months after the the second has be	teen sent to the client by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co	4, The complete or partial reproduction 5. Any incomplement with the results of	of the report is prohibited without writte an be processed within 3 months after 1	en approval of Alpha1 S.A.S. the the report has been sent to the cli	ent by Alpha1 S.A.S.		gerenciaadministrativa@alpha1.com.co
5. Any inconveniences with the results	tan be processes within 5 months after the the report has se				2. This incompany with the results of					

WA	VELENGTH DISPERSI	VE X-KAT FLUOR	SCENCE REPORT			WA	CLENGIN DISPERS	IVE A-RAT FLUU	NESCENCE REPORT		
Identification	500357791 CANECA 2		Consecutive of Sample:	AUX 26121		Identification	500357792 CANECA 2		Consecutive of Sample:	AUX 26120	
Sample Type:	DESCONOCIDO	Re	esponsible for Sampling	CLIENT		Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT	
origin.	DESCONOCIDO	Sa	Date Received:	02/09/2021		origin.	DESCONOCIDO		Date Received:	02/09/2021	
Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021		Client:	AUXICO RESOURCES		Date of Analysis:	15/09/2021	
Contact:	TIFFANY CIFUENTES	-	Date of Report:	15/09/2021		Contact:	TIFFANY CIFUENTES		Date of Report:	15/09/2021	
Address:	201 KUE NUTKE DAME OUES MONTREAL		Solicitud Análisis:	\$47735		Address:	201 RUE NOTRE DAME OUE MONTREAL	51	Solicitud Análicie:	\$47725	
Phone Number:	1 4384999621		Consecutive of Report:	26121-RE XRF		Phone Number:	1 4384999621		Consecutive of Report:	26120-RE XRF	
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN F	PASTILLA	Application:	1,11 AQ 2020		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020	
T-35 Versión 3		OBSERVATIONS		Página 1 de 1		FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1	
			· · · · · · · · · · · · · · · · · · ·					ODSERVATIONS			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Sodium	Na ₂ U	0,06				Magnesium	MgO	0,06		
	magnesium	MgU	0,06				Aluminum	Al ₂ O ₃	19,35		
	Aluminum	Al ₂ O ₃	11,80				Silicon	SiO ₂	26,08		
	Silicon	5102	41,40				Phosphorus	P205	0,14		
	Phosphorus	P205	0,40				Potassium	K ₂ O	0,72		
	Potassium	K ₂ U	0,6/				Titanium	TiO ₂	0,70		
	Calcium	CaO	0,10				Iron	Fe ₂ O ₃	43,87		
	Titanium	1102	0,53				Zirconium	ZrO ₂	0,04		
	Iron	Fe ₂ O ₃	38,30				Lead	РЬО	0,02		
	Zirconium	Zr0 ₂	0,04				Loss of Ignition	LOI	8,90		
	Loss of Ignition	LOI	6,62				•				
		REE					N	REE			
	Name	Element	Composition (%)				Name	Element	Composition (%)		
	Cerium	CeO ₂	N.D.				Cerium	CeO ₂	N.D.		
	Neodymium	Nd ₂ O ₃	N.D.				Neodymium	Nd ₂ U ₃	N.D.		
	Lanthanum	La ₂ O ₃	N.D.				Lanthanum	La ₂ O ₃	N.D.		
	Praseodymium	Pr ₂ O ₃	N.D.				Praseodymium	Pr ₂ U ₃	N.D.		
	Samarium	Sm ₂ O ₃	N.D.				Samarium	Sm ₂ O ₃	N.D.		
	Gadolinium	Gd ₂ O ₃	N.D.				Gadolinium	Gd ₂ O ₃	N.D.		
	Dysprosium	Dy ₂ O ₃	N.D.				Dysprosium	Dy ₂ O ₃	N.D.		
	Yttrium	Y ₂ O ₃	N.D.				Yttrium	Y ₂ O ₃	N.D.		
	Ytterbium	Yb ₂ O ₃	N.D.				Ytterbium	Yb ₂ O ₃	N.D.		
	Erbium	Er ₂ O ₃	N.D.				Erbium	Er ₂ 0 ₃	N.D.		
	Total Rare Earth	055					Total Rare Earth	DEE	0.0		
	Elements	REE	0,0				Elements	HEE	0,0		
bservations			1			Observations					
D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour					N.D. : NOT DETECTABLE LOI : (LOS	OF IGNTION) 1000°C for 1 hour				
ne analysis corresponds to a semi-	quantitative program (max std 5%). 1	The result is based on dried mater	Approved by Jairo Torres	5		The analysis corresponds to a semi-	quantitative program (max std 5%).	The result is based on dried ma	teri Approved by Jairo Torres		
is technique does not validate the n	one presence of elements not detected	if they are below 100ppm. Our trac	General Manager			This technique does not validate the n	one presence of elements not detected	d if they are below 100ppm. Our t	General Manager		
r the validity or applicability of the p	esults with commercial ands. Alpha1 5 A	S does not take responsibility for t	he representativity			For the validity or applicability of the p	sults with commercial ends. Alpha 1 S	A S does not take responsibility fr	r the representativity		
nd traceability of the sample and for	wards them to the Sampling Plan/Proces	ture referenced above.				and traceability of the sample and forv	ards them to the Sampling Plan/Proce	adure referenced above			
loisture	1,22 9	6				Moisture	1,69	%			
dioactivity	NONE	/Sv/h	Produce by Juan Sebastia	n Betancourt		Radioactivity	NONE	µSv/h	Produce by Juan Sebastia	n Betancourt	
onetic Characteristics:	15g NONE		Analyst		AK 60 No. 67* 80 B. Modelo Norte	Sample quantity	1450g		Analyst		AK 60 No. 67ª 80 B. Modelo
tes:			-		Bogotá D.C.	Notes:	nvac				Boao
Alpha1 S.A.S reserves the right to con	firm the authenticity of this report of anal	ysis under the policies of confidential	ty and property rights of our clients.		iei. (5/-1) 2313518	1. Alpha1 S.A.S reserves the right to cor	firm the authenticity of this report of an	alysis under the policies of confiden	tiality and property rights of our clients.		Tel. (57-1) 23
This report is only for this sample. Ev	ery copy of the results on paper will have	an additional 15% cost of the price of	f the analysis.		MOVIL 5154549361	 The analytical results present corresp This report is only for this sample. Evo 	ond EXCLUSIVELY to the sample received ry copy of the results on paper will have	d and NOT to any other material of an additional 15% cost of the pric	he same origin. e of the analysis.		Móvil 31345
The complete or partial reproduction	of the report is prohibited without written	approval of Alpha1 S.A.S.			www.apnat.com.co	4, The complete or partial reproduction	f the report is prohibited without writter	n approval of Alpha1 S.A.S.	· · · · · · · · · · · · · · · · · · ·		www.alpha1.c
ine complete or partial representation	the second se				to the model of the strategy and the total tota	the second se	a ha ann an an An Air a an Air an Air an	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	East by Alabat CAC		

<form></form>	WAV	ELENGTH DISPERSIV	/E X-RAY FLUO	RESCENCE REPORT			WA	VELENGTH DISPERS	IVE X-RAY FLUC	RESCENCE REPORT		
	Identification Sample Type: Origin: Client: Contact: Address:	500357793 CANECA 2 DESCONOCIDO DESCONOCIDO AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OUEST		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report:	AUX 26123 CLIENT NONE 02/09/2021 15/09/2021 15/09/2021	Cliphat. Servicios Analiticos	Identification Sample Type: Origin: Client: Contact: Address:	PERSONAL 500357793A FI DESCONOCIDO DESCONOCIDO AUXICO RESOURCES TIFFANY CIFUENTES 201 RUE NOTRE DAME OUE	NOS ST	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report:	AUX 26102 CLIENT NONE 01/09/2021 02/09/2021 02/09/2021	
	City: Phone Number:	MONTREAL 1 4384999621		Consecutive of Report:	5A7735 26123-RE XRF		City: Phone Number:	MONTREAL 1 4384999621		Solicitud Análisis: Consecutive of Report:	SA7734 26102-RE XRF	
No. Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""><td>Method of Analysis:</td><td>PRT-GT-01 WDXRF-OMNIAN P/</td><td>ASTILLA</td><td>Application:</td><td>1,11 AQ 2020</td><td></td><td>Method of Analysis:</td><td>PRT-GT-01 WDXRF-OMNIAN</td><td>PASTILLA</td><td>Application:</td><td>1,11 AQ 2020</td><td></td></th<></thdescription<></thdescription<>	Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN P/	ASTILLA	Application:	1,11 AQ 2020		Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020	
	FI-GI-35 Version 3		OBSERVATIONS		Pagna 1 de 1		FT-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1	
$\frac{\frac{1}{100000000000000000000000000000000$		Name	Element	Composition (%)				Nama	El	C (01)		
$\frac{\mathbf{w}_{\text{rescale}}}{\mathbf{w}_{\text{rescale}}} \frac{\mathbf{v}_{0}0}{0} \frac{\mathbf{v}_{0}\mathbf{v}_{0}0}{0} \frac{\mathbf{v}_{0}0}{0} \frac{\mathbf{v}_{0}0}{\mathbf{v}_{0}0} \frac{\mathbf{v}_{0}0}{\mathbf{v}_{0}0} \frac{\mathbf{v}_{0}0}{\mathbf{v}_{$		Sodium	Na ₂ O	N.D.				Aluminum	AL-O-	1 1		
$\frac{\operatorname{Auchen} A_{0,0} \\ (0,0) $		Magnesium	MgO	N.D.				Silicon	SiO	2.9		
$\frac{8 \log n}{\log \log n} \frac{6 Q_0}{Q_0} \frac{1}{13.0}}{\frac{1}{\log \log n}} \frac{1}{\log Q_0} \frac{1}{\log Q_0} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}} \frac{1}{\log Q_0} \frac{1}{\log Q_0}} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0}} \frac{1}{\log Q_0}}{\frac{1}{\log Q_0}} \frac{1}{\log Q$		Aluminum	Al ₂ O ₃	1,06				Phosphorus	P ₂ O ₂	13.4		
$\frac{Prophone}{Prophone} \frac{P_{O_{O}}}{P_{O}} \frac{13.89}{13.89}$ $\frac{Prophone}{Prophone} \frac{P_{O_{O}}}{P_{O}} \frac{P_{O}}}{P_{O}} \frac{P_{O}} \frac{P_{O}}}{P_{O}} \frac{P_{O}} \frac{P_{O}}}{P_{O}} \frac{P_{O}} P_$		Silicon	SiO ₂	2,72				Calcium	CaO	0.3		
$\frac{clobn}{lt} \frac{clob}{lt} c$		Phosphorus	P205	13,98				Iron	Fe ₂ O ₃	4,4		
$\log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 \log_2 $		Calcium	CaO	0,40				Zirconium	Zr0 ₂	0,7		
$\frac{\ln n}{\ln n} \frac{\ln n}{\ln n} \ln $		Manganese	MnO	3,55				Niobium	Nb ₂ O ₅	0,6		
$\frac{2 \cos \theta_{11}}{\cos \theta_{11}} \frac{2 \cos \theta_{12}}{\cos \theta_{12}} 2 $		Iron	Fe ₂ O ₃	4,11				Tin	SnO ₂	0,2		
$\log \log $		Zirconium		0,73				Tantalum	Ta ₂ O ₅	0,7		
$\frac{ \mathbf{k} ^2}{ \mathbf{k} ^2} \frac{ \mathbf{k} ^2}{ \mathbf{k} ^2} \frac{ \mathbf{k} ^2}{ \mathbf{k} ^2} \frac{ \mathbf{k} ^2}{ \mathbf{k} ^2} \frac{ \mathbf{k} ^2}{ $		Niobium	ND ₂ U ₅	0,62				Tungsten	WO ₃	0,2		
$\ln \ln $		Tantaium	1a205	0,72				Lead	РЬО	0,5		
$\frac{\ln \alpha \ln n}{\ln \alpha \ln \alpha} \frac{\ln \alpha}{\ln \alpha} \frac{1}{\ln \alpha} $		Hafnium	HfO ₂	0,41				Hafnium	HfO ₂	0,3		
$\frac{ }{ } \frac{ }{ } \frac{ }{ } \frac{ }{ }$		Thorium	ThO ₂	7,27				Thorium	ThO ₂	7,4		
$\frac{\ln n}{\log n} \frac{\log n}{\log n} \log $		Uranium	U	0.18				Uranium	U	0,2		
$\frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$		Tin	SnO ₂	0,19				Loss of Ignition	LOI	1,4		
$\frac{k \in Certain }{k \oplus Certain } \frac{k \oplus Certain }{k \oplus Certain } k $		Loss of Ignition	LOI	4,16					REE			
$\frac{hc}{hc} = \frac{hc}{hc} = hc$			DEE					Name	Element	Composition (%)		
$\frac{\frac{1}{100000000000000000000000000000000$		Name	Floment	Composition (9t)				Cerium	CeO ₂	40.74		
$\frac{\log_{10} \log_{10} \log_{10$		Cerium	CeO	38.66				Neodymium	Nd ₂ O ₂	7.84		
$\frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$		Neodymium	Nd ₂ O ₂	7.27				Lanthanum	La ₂ O ₃	8.56		
$\frac{Preseedymium}{Sm_{2}O_{1}} = \frac{2,0}{2,20}$ $\frac{Samarlum}{Sm_{2}O_{1}} = \frac{2,0}{2,0}$ $\frac{Samarlum}{Sm_{2}O_{1}} =$		Lanthanum	LapOn	6,91				Praseodymium	Pr ₂ O ₃	2,13		
$\frac{\int Gadolinkum}{Gadolinkum} - \frac{Gadolinkum}{Gadolinkum} $		Praseodymium	Pr ₂ O ₃	2,06				Samarium	Sm ₂ O ₃	2,12		
$\frac{6400 \text{link} \text{m}}{10^{2} \text{s}^{2} $		Samarium	Sm ₂ O ₃	2,20				Gadolinium	Gd ₂ O ₃	2,46		
$\frac{\boxed{\text{Pypersistim}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}}$ $\frac{\boxed{\text{Yttrium}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}}$ $\frac{\boxed{\text{Yttrium}}}{\boxed{\text{Yttrium}}} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{\boxed{\text{Y}_{2}\text{O}_{3}}{(0,0.4)}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{(0,0.4)}{(0,0.4)}}$ $\frac{\boxed{\text{Yttrium}}}{(0,0.4)} \frac{(0,0.4)}{(0,0.4)}}$ $\frac{(0,0.4)}{(0,0.4)} \frac{(0,0.4)}{(0,0.4)}}$ $\frac{(0,0.4)}{$		Gadolinium	Gd ₂ O ₃	1,10				Dysprosium	Dy ₂ O ₃	0,91		
$\frac{\operatorname{Yterbinn} \operatorname{Yr}_{2}, \operatorname{O}_{3} \operatorname{O}_{4}, \operatorname{O}_{4}}{\operatorname{Yterbinn} \operatorname{Yr}_{2}, \operatorname{O}_{3} \operatorname{O}_{4}, \operatorname{O}_{5}}{\operatorname{I}_{2}, \operatorname{O}_{3}, \operatorname{O}_{4}, \operatorname{O}_{5}, \operatorname{O}_{4}, $		Dysprosium	Dy ₂ O ₃	0,43				Yttrium	Y ₂ O ₃	0,10		
$\frac{\text{Yterbium}}{\text{Er}_{2}O_{3}} 0,01}{\text{Total Rare Earth}} \text{REE} 59,6$ $\frac{\text{Erbium}}{\text{Er}_{2}O_{3}} 0,02$ $\frac{\text{Erbium}}{\text{Er}_{2}O_{3}} 0,02$ $\frac{\text{Erbium}}{\text{Er}_{2}O_{3}} 0,02$ $\frac{\text{Erbium}}{\text{Er}_{2}O_{3}} 0,02$ $\frac{\text{Erbium}}{\text{Er}_{2}O_{3}} 0,02$ $\frac{\text{Erbium}}{\text{Erbium}} \text{Er}_{2}O_{3} 0,02$ $\frac{\text{Erbium}}{\text{Erbium}} \text{Erbium}} \text{Erbium} \text{Er}_{2}O_{3} 0,02$ $\frac{\text{Erbium}}{\text{Erbium}} \text{Erbium}} \text{Erbium} \text{Erbium}} \text{Erbium}} \text{Erbium}} \text{Erbium}} \text{Erbium}} \text{Erbium} \text{Erbium}} Erb$		Yttrium	Y ₂ O ₃	0,04				Ytterbium	Yb ₂ O ₃	0,61		
Erblum ErgOs 0.0.11 Total Rare Earth REE 59,6 Observations No. :vioTettONGE 10::100.00 functions Rest dots of the model of the servations Rest dots of the model of the servet and the servet and the servet and the model of the servet and the model of the servet and the servet and t		Ytterbium	Yb ₂ O ₃	0,95				Erbium	Er ₂ O ₃	0,20		
Induct Name REE 59,6 Dimensional Dimensional </td <td></td> <td>Erbium</td> <td>Er₂O₃</td> <td>0,01</td> <td></td> <td></td> <td></td> <td>Total Rare Earth</td> <td>DEE</td> <td>CE 7</td> <td></td> <td></td>		Erbium	Er ₂ O ₃	0,01				Total Rare Earth	DEE	CE 7		
Elements Action 0.2 word Deficitions 0.3 word Deficitions 0.2 wo		Total Rare Earth	REE	59.6				Elements	KEE	00,7		
Observations NL: NOT DETECTABLE LOI: (LOS OF HOTON) 1000°C for 1 hour: The analysis corresponds to a semi-quantitative program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on diver mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on divert mane defense program (max dd 5%). The result is based on dive		Elements								· · · ·		
Discussional UL: NOT DETECTABLE LOI: (LOSS OF RATION) 1000*/Chr 1 hour The analysic corresponds to a semi-quantitative program (max sd 5%). The result is based on drive dates Approved by Jairo Torres Samined Measures Samined Measures Approved by Jairo Torres Samined Measures Samined Measures Approved by Jairo Torres Samined Measures Samined Measures Approved by Jairo Torres Samined Measures Amount of Samined Measures				-			Observations					
NL: N: NOT DETERTINE: UN: 00.05 DETERTINE: UN: 00.05 DETERTINE: UN: 00.05 DETERTINE: NE: 00.05 DETERTINE: <t< td=""><td>Observations</td><td></td><td></td><td></td><td></td><td></td><td>N.D. : NOT DETECTABLE LOI : (LOS</td><td>S OF IGNTION) 1000°C for 1 hour</td><td></td><td></td><td></td><td></td></t<>	Observations						N.D. : NOT DETECTABLE LOI : (LOS	S OF IGNTION) 1000°C for 1 hour				
The subject corresponds to a subject of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The result is based on diver attemption of the same (Approved by Juan 5 by). The same (Approve	N.D. : NOT DETECTABLE LOI : (LOSS	OF IGNTION) 1000°C for 1 hour					The analysis corresponds to a semi-	-quantitative program (max std 5%).	The result is based on dried r	materi Approved by Jairo Torres		
Intersteps AK 60 No. 678 0B. Modelo Norte Betradetility of the roads with commercial ends, Apha1 5A5 does not take responsibility for the request at lease responsis responsibility for the request at lease r	The analysis corresponds to a semi-	uantitative program (max std 5%). Th	e result is based on dried m	aten Approved by Jairo Torre: General Manager	5		This technique does not validate the n	none presence of elements not detected	d if they are below 100ppm. Ou	General Manager		
	This technique does not validate the no	ne presence of elements not detected if	they are below 100ppm. Our	trace			For the validity or applicability of the r	esults with commercial ends, Alpha1 S.	A.S does not take responsibility	for the representativity		
Bit disclosing of the stapping relativity of the conduction of the subject of the subj	For the validity or applicability of the re-	suits with commercial ends, Alpha1 S.A.S	o does not take responsibility t	or the representativity		AK 60 No. 67 ^a 80 B. Modelo Norte	and traceability of the sample and for	wards them to the Sampling Plan/Proce	dure referenced above.			AK 60 No. 67ª 80 B. Modelo Norte
Indexidentity juice Produce by Juan Sebastian Betancourt 1et. (5/-1) 2313518 Seeple quantity 2515g Maybet Movil 3134549361 Magnetic Curatacteristics: TE Movil 3134549361 Movil 3134549361 Magnetic Curatacteristics: NONE Movil 3134549361 Movil 3134549361 Integret Contracteristics: NONE Movil 3134549361 Movil 3134549361 Integret Contracteristics: NONE Movil 3134549361 Movil 3134549361 Integret Contracteristics: NONE Movil 3134549361 Movil 3134549361 To report in onlytics and present origits confirm the authenticity of this report or available solute the policies of confiematily and present rights and configentity and present rights of our clean. Www.alphal.com.co 1. The applied in the same solidies Simple equantity 126g Movil 3134549361 None gerenciaadministrativa@alphal.com.co Bankit confirm the authenticity of this sample necked and this same solidies Www.alphal.com.co Item prese in orghit report is semple service and this same solidies Movil 3134549361 No movement on the analysis of the mass additional USS service service and the availies None material of the sample service and the same solidies Movil 3134549361 No movement on the availies of	And staceaoutry of the sample and forward Moisture	0,38 %	re reverenced above.			Bogotá D.C.	Radioactivity	0,22 4,6	≫o µSv/h	Produce by Juan Sebastia	n Betancourt	Bogotá D.C.
Imagenetic characteristics: NONE Magnetic Characteristics: NONE Movini 3134549361 Name: Imagenetic Characteristics: NONE Movini 3134549361 Movini 3134549361 Name: Imagenetic Characteristics: None: Imagenetic Characteristics: Movini 3134549361 Name: Imagenetic Characteristics: None: Movini 3134549361 Movini 3134549361 Name: Imagenetic Characteristics: None: Movini 3134549361 Movini 3134549361 Name: Imagenetic	Radioactivity Sample quantity	2515-	v/h	Produce by Juan Sebastia	n Betancourt	lel. (5/-1) 2313518	Sample quantity	126g		Analyst		Tel. (57-1) 2313518
Nets: Netse: Netsee: Netse: Netse:<	Magnetic Characteristics:	YES		Analyst		www.alpha1.com.co	Magnetic Characteristics:	NONE				Móvil 3134549361
1. Abject 3.45 measures the rights confirm the authenticity of this report of rights of confirm that authenticity of this report is report in the report is any first confirm that authenticity of this report is report in the report is repor	Notes:					gerenciaadministrativa@alpha1.com.co	Notes: 1. Alpha.1 S.A.5 reserves the right to co	nfirm the authenticity of this report of an	alysis under the policies of confide	entiality and property rights of our clients.		www.alpha1.com.co
3. The reports and/p for this sample. Every carry of the results on paper will have as addetional 15% cost of the price of the analysis. 4. The complete a prici is entry for this sample. Every carry of the results on paper will have as addetional 15% cost of the price addetional 15%. 4. The complete a prici is entry for the sample. Every carry of the results on paper will have as addetional 15% cost of the price addetional 15%. 5. Any incommittees with the results on the result of	1. Alpha1 S.A.S reserves the right to conf 2. The analytical results present correspo	irm the authenticity of this report of analys nd EXCLUSIVELY to the sample received ar	is under the policies of confider nd NOT to any other material of	itiality and property rights of our clients. the same origin.			2. The analytical results present corresp	oond EXCLUSIVELY to the sample received	and NOT to any other material o	f the same origin.		gerenciaadministrativa@alpha1.com.co
 a. The output of proceed information is not register a provide state of provide and proceed with the state of provide and pro	3. This report is only for this sample. Even	ry copy of the results on paper will have an	additional 15% cost of the price	e of the analysis.			 This report is only for this sample. By The complete or partial reproduction 	ery copy of the results on paper will have of the report is prohibited without writter	an accetional 15% cost of the pr approval of Alpha1 S.A.S.	nce of the analysis.		
The dispetal of the countersamples and unuses samples is done in accordance with watch has been approved with the done in the request of analysis. In the dispetal of the countersamples and unuses samples is done in accordance with watch has been approved with the done in the request of analysis.	 Any inconveniences with the results car 	n we report is pronibited without written ap n be processed within 3 months after the t	pprover of Alpha 1 3.4.3. he report has been sent to the	client by Alpha1 S.A.S.			5. Any inconveniences with the results of	an be processed within 3 months after th	e the report has been sent to the	e client by Alpha1 S.A.S.		
	6, The disposal of the countersamples an	d unused samples is done in accordance w	ith what has been approved wit	h the client in the request of analysis.			v, the disposal of the countersamples a	ene vervoent samples is cone in accordanc	e waa what has been approved w	on one careft in the request or analysis.		

WAVE	ELENGTH DISPERS	IVE X-RAY FLUORE	K-RAY FLUORESCENCE REPORT WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT								
Identification P	ERSONAL 500357793B CC	DORSE	Consecutive of Sample:	AUX 26101	Servicios Analíticos	Identification	n 500357795		Consecutive of Sample:	AUX 26099	
Sample Type: D	ESCONOCIDO	Re	sponsible for Sampling	CLIENT		Sample Type	: DESCONOCIDO : DESCONOCIDO	ł	Responsible for Sampling	CLIENT	Mpha
origin. D	ESCONOCIDO	Jai	Date Received:	01/09/2021		origin	. DESCONDERDO		Date Received:	01/09/2021	Servicios Analítico
Client: A	UXICO RESOURCES		Date of Analysis:	02/09/2021		Client	E AUXICO RESOURCES		Date of Analysis:	02/09/2021	
Contact: T	IFFANY CIFUENTES	cT	Date of Report:	02/09/2021		Address	: 201 RUE NOTRE DAME OU	JEST	Date of Report.	02/05/2021	
City: M	IONTREAL	51	Solicitud Análisis:	SA7734		City	: MONTREAL		Solicitud Análisis:	SA7734	
Phone Number: 1	4384999621		Consecutive of Report:	26101-RE XRF		Phone Number	: 1 4384999621		Consecutive of Report:	26099-RE XRF	
Method of Analysis: P	RT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020		Method of Analysis FT-GT-35 Versión 3	C PRI-GI-UT WDXRF-OMNIA	N PASTILLA	Application:	1, 11 AQ 2020 Página 1 de 1	
-T-GT-35 Versión 3		OBSERVATIONS		Página 1 de 1				OBSERVATIONS		-	
							Name	Element	Composition (%)		
	Name	Element	Composition (%)				Aluminum	Al ₂ O ₂	1.3		
	Aluminum	Al ₂ O ₃	0,8				Silicon	SiO ₂	2.9		
	Silicon	SiO ₂	2,0				Phosphorus	P205	14,0		
	Phosphorus	P205	14,6				Calcium	CaO	0,4		
	Calcium	CaO	0,4				Manganese	MnO	0,1		
	Iron	Fe ₂ O ₃	3,7				Iron	Fe ₂ O ₃	7,2		
Γ	Zirconium	ZrO ₂	0,4				Zirconium	Zr0 ₂	0,5		
F	Niobium	Nb ₂ O ₅	N.D.				Niobium	Nb ₂ O ₅	1,2		
F	Tantalum	Ta ₂ O ₅	0,1				Tantalum	Ta ₂ O ₅	1,3		
F	Tungsten	WO ₃	0,1				Tungsten	WO ₃	0,3		
F	Lead	РЬО	0,4				Lead	РЬО	0,5		
	Hafnium	HfO ₂	0.1				Hafnium	HfO ₂	0,3		
-	Thorium	ThO	79				Thorium	ThO ₂	7,1		
-	Uranium		0.2				Uranium	U	0.2		
F	Loss of Ignition	101	1.2				Tin	SnO ₂	0,2		
F	Loss of Ightion	LOI					Bismuth	Bi ₂ O ₃	0,2		
		REE					Loss of Ignition	LOI	1,5		
	Name	Element	Composition (%)					DEC			
	Cerium	CeO2	43,93				News	NEC	Companyition (Of)		
	Neodymium	Nd ₂ O ₃	8,44				Name	Element	Composition (%)		
	Lanthanum	La ₂ O3	7,77				Cerium	CeO ₂	36,/5		
	Praseodymium	Pr ₂ O ₃	2,25				Neodymium	Nu203	/,50		
	Samarium	Sm ₂ O ₃	2,37				Lantnanum	La ₂ O ₃	9,57		
	Gadolinium	Gd ₂ O ₃	2.67				Fraseodymum	FT2U3	1,62		
	Dysprosium	Dy ₂ O ₃	0.49				Samanum	5ili203	2,00		
	Yttrium	Y ₂ O ₂	0.07				Gadolinium	00203	2,17		
	Ytterbium	Yb ₂ O ₂	0.22				Vttelum	V 0	0,70		
F	Erbium	Fr-0.	0.11				Ytterbium	1203 Vb 0	0,12		
-	T I D I T I	21203	0,11				Tuerbium	TD203	0,56		
	Iotal Kare Earth	REE	68,3				Erbium	Er ₂ U ₃	0,25		
L	Elements						Total Rare Earth	REE	61,0		
			1				Elements				
Observations						a <i>c</i>					
N.D. : NOT DETECTABLE LOI : (LOSS O	DFIGNTION) 1000°C for 1 hour					Ubservations					
The analysis corresponds to a semi-qu	antitative program (max std 5%).	The result is based on dried materi	Approved by Jairo Torres	5		N.D NOT DETECTABLE LOT . (LO	55 OF Idention) 1000 Clor 1 Hour		1 1 1 T		
This technique does not validate the non-	e presence of elements not detected	d if they are below 100ppm. Our trace	deneral Hanager			The analysis corresponds to a sem	I-quantitative program (max std 5%	b). The result is based on dried mat	General Manager		
For the validity or applicability of the resu	ults with commercial ends, Alpha1 S.	A.S does not take responsibility for th	e representativity			This technique does not validate the	none presence of elements not detec	ted if they are below 100ppm. Our tr	808		
and traceability of the sample and forwar	ds them to the Sampling Plan/Proce	adure referenced above.				For the validity or applicability of the	results with commercial ends, Alpha1	S.A.S does not take responsibility for	the representativity		AK 60 No. 67 ^a 80 B. Modelo Norte
Moisture Radioactivity	5.0	vs uSv/h	Produce by Juan Sebastia	n Betancourt	AK 60 No. 67 ⁴ 80 B. Modelo Norte	and traceability of the sample and fo Moisture	rwards them to the Sampling Plan/Pro 0,34	%	-		Bogotá D.C
Sample quantity	106g		Analyst		Bogotá D.C.	Radioactivity	4,0	µSv/h	Produce by Juan Sebastia	n Betancourt	Tel. (57-1) 2313518
Agnetic Characteristics:	NONE		rings.		lel. (5/-1) 2313518	Sample quantity	158g	_	Analyst		Mövil 3134549361
lotes:	m the sufference of shires and	where under the politics of sould at the	a and monomorphy singless of successful in		MOVII 3134549361	Magnetic unaracteristics: Notes:	NONE		_		www.aipna1.com.co
2. The analytical results present correspond	m the waldenticity of this report of an d EXCLUSIVELY to the sample received	aysis unuer the policies of confidentialit d and NOT to any other material of the s	y anu property rights of our clients. Iame origin.		www.aipna1.com.co	1. Alpha1 S.A.S reserves the right to o	onfirm the authenticity of this report of a	analysis under the policies of confidenti	ality and property rights of our clients.		gerenciadoministrativa@aipfia1.com.co
3. This report is only for this sample. Every	copy of the results on paper wil have	an additional 15% cost of the price of	the analysis.		gerenciaadministrativa@aipna1.com.co	 The analytical results present correct This report is only for this sample. E 	spond EACLUSIVELY to the sample receiv ivery copy of the results on paper will have	ved and NOT to any other material of th ave an additional 15% cost of the orice	e same origin. of the analysis.		
 Ine complete or partial reproduction of t Any inconveniences with the results can l 	one report is prohibited without writter be processed within 3 months after th	n approval of Alpha1 3.A.3. te the report has been sent to the client	t by Alpha1 S.A.S.			4, The complete or partial reproduction	n of the report is prohibited without writ	ten approval of Apha1 S.A.S.			
6, The disposal of the countersamples and	unused samples is done in accordanc	e with what has been approved with the	client in the request of analysis.			5. Any inconveniences with the results 6, The disposal of the countersamples	can be processed within 3 months after and unused samples is done in accorda	r the the report has been sent to the cli unce with what has been approved with	ent by Alpha1 S.A.S. the client in the request of analysis.		

Identification CO	LENGTH DISPERSIVE	E X-RAY FLUO	RESCENCE REPORT			WAVE	LENGTH DISPE	ERSIVE X-RAY FLUORE	SCENCE REPO	RT
Sample Type: DES Origin: DES	0357796 SCONOCIDO SCONOCIDO		Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26100 CLIENT NONE 01/09/2021	Servicios Analíticos	Identification Sample Type: Origin:	500351155 CANEC DESCONOCIDO DESCONOCIDO	A 1 LAVADO // "26136" Con Respo Sampl	secutive of Sample: nsible for Sampling	AUX 262 CLIEI
Contact: TIF Address: 20 City: MO	THE RESOURCES FANY CIFUENTES 11 RUE NOTRE DAME OUEST DNTREAL		Date of Analysis. Date of Report: Solicitud Análisis:	02/09/2021 02/09/2021 \$\$7734		Client:	AUXICO RESOUR	CES	Date Received: Date of Analysis:	10/6/202 10/7/202
Phone Number: 1 4 Method of Analysis: PR	4384999621 IT-GT-01 WDXRF-OMNIAN PAS	ITILLA	Consecutive of Report: Application:	26100-RE XRF 1,11 AQ 2020		Contact: Address:	TIFFANY CIFUENT 201 RUE NOTRE D	TES DAME OUEST	Date of Report:	10/7/202
15 Versión 3		OBSERVATIONS		Pàgina 1 de 1		City:	MONTREAL		Solicitud Análisis:	SA776
	Name	Element	Composition (%)	ſ		Phone Number:	1 4384999621	Coi	nsecutive of Report:	26258-RE XR
E	Aluminum	Al ₂ O ₃	1,1			Method of Analysis:	PRI-GI-01 WDXR	F-OMNIAN PASTILLA	Application:	11 AQ 2020 L
	Silicon	SiO ₂	2,7			F1-01-3: Version 3	1.500		1	Página 1 d
	Phosphorus	P205	14,0						Weight after	
	Calcium	CaO	0,4				initial weight (g)	Weight before concentration (g)	concentration and	
	Iron	Fe ₂ O ₃	4,8						drying(g)	
\vdash	Zirconium	ZrO ₂	0,1				5200	5200	41.6	
F	Niobium	Nb ₂ U ₅	1,0				Co	ncentration ratio	125	
\vdash	Tantalum	TasOr	1.3						-	
	Tungsten	WO ₂	0.1					OBSERVATIONS		
	Lead	PbO	0,6				Name	(¹⁷)		
	Hafnium	HfO ₂	0,3				Name	Element	Composition (%)	
	Thorium	ThO ₂	7,0	÷			Aluminum	Al ₂ O ₃	2.29	
	Uranium	U	0,2				Silicon	SiO ₂	86.11	
	Loss of Ignition	LOI	1,5				Phosphorus	P ₂ O ₅	0.05	
		RFF		ſ			Potassium	K₂O	0.08	
	Name	Element	Composition (%)				Manganese	MnO	N.D.	
- E	Cerium	CeO ₂	38,82				Titanium	TiO	0.19	
	Neodymium	Nd ₂ O ₃	8,39				Iron	Fo O	0.19	
	Lanthanum	La ₂ O ₃	6,80				Zinconium	7-0	9.50	
	Praseodymium	Pr ₂ O ₃	2,74				Zirconium	202	0.09	
	Samarium	Sm ₂ O ₃	2,59				Tungsten	WO ₃	N.D.	
L	Gadolinium	Gd ₂ O ₃	2,39				Loss of Ignition	LOI	1.67	
	Dysprosium	Dy ₂ O ₃	0,96							
\vdash	Ytterbium	T203	1,03					Precious metals on concentrat	te	
\vdash	Erbium	Er ₂ O ₃	0,40				Name	Element	Composition (ppm))
F	Total Rare Earth	DEE	64.2				Gold	Au	15	
L	Elements	nce	04,2				Silver	Ag	<1	
			_				Palladium	Pd	<1	1
ins.							Platinum	Dt .	20	1
DETECTABLE LOI : (LOSS OF	IGNTION) 1000°C for 1 hour						*Estimated LLD forWDXRF.OL	INIAN PASTILLA on concentrate material in 400 mm	30	1
servations . : NOT DETECTABLE LOI : (LOSS OF) analysis corresponds to a semi-quan	IGNTION) <u>1000°C for 1 hour</u> ntitative program (max std 5%). The	result is based on dried m	ateriApproved by Jairo Torre General Manager	5			Platinum *Estimated LLD forWDXRF-OW	Pt NIAN PASTILLA on concentrate material is 100 por	38	

WA	VELENGTH DISPERS	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	500357774 CANECA 1 LAV	ADO // "26137"	Consecutive of Sample:	AUX 26259
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
a !!			Date Received:	06/10/2021
Client:	AUXICO RESOURCES		Date of Analysis:	29/11/2021
	201 RUE NOTRE DAME OUE	ST	Date of heport.	29/11/2021
City:	MONTREAL	-51	Solicitud Análisis:	SA7767
Phone Number:	1 4384999621		Consecutive of Report:	26259-RE XRF
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020 LT
FT-GT-35 Versión 3				Página 1 de 1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	
	1200	1200	39,3	
	Concentra	ation ratio	31	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Aluminum	Al ₂ O ₃	8,17	
	Silicon	SiO ₂	80,87	
	Phosphorus	P ₂ O ₅	0,08	
	Potassium	K ₂ O	0,09	
	Titanium	TiO ₂	0,23	
	Iron	Fe ₂ O ₃	10,47	
	Zirconium	ZrO ₂	0,05	
	Pre	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	
	*Estimated LLD forWDXRF-OMNIAN PASTILL	A on concentrate material is 100 ppm		

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	50035775 CANECA 1 LAVA	DO // "26139"	Consecutive of Sample:	AUX 26261
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
a :			Date Received:	06/10/2021
Client:	AUXICO RESOURCES		Date of Analysis:	0//10/2021
	201 RUE NOTRE DAME OUE	st	Date of Report.	07/10/2021
City:	MONTREAL		Solicitud Análisis:	SA7767
Phone Number:	1 4384999621		Consecutive of Report:	26261-RE XRF
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020 LT
FT-GT-35 Versión 3				Página 1 de 1
	Initial weight (g)	Weight before	Weight after concentration and	
	5 (5)	concentration (g)	drying (g)	
	3560	3560	45,0	
	Concentra	ation ratio	79	
		OBSERVATIONS		
			C	
	Name	Element	Composition (%)	
	Name Aluminum	Element Al2O3	Composition (%) 17,64	
	Name Aluminum Silicon	Element Al2O3 SiO ₂	Composition (%) 17,64 61,28	
	Name Aluminum Silicon Phosphorus	Element Al2O3 SiO ₂ P ₂ O ₅	Composition (%) 17,64 61,28 0,09	
	Name Aluminum Silicon Phosphorus Potassium	Element Al2O3 SiO ₂ P ₂ O ₅ K ₂ O	Composition (%) 17,64 61,28 0,09 0,07 0,07	
	Name Aluminum Silicon Phosphorus Potassium Manganese	Element AI203 SiO ₂ P ₂ O ₅ K ₂ O MnO	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,07	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium	Element AI2O3 SiO ₂ P ₂ O ₅ K ₂ O MnO TiO ₂	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,07	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron	Element Al2O3 SiO ₂ P ₂ O ₅ K ₂ O MnO TiO ₂ Fe ₂ O ₃	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium	Element Al2O3 SiO ₂ P ₂ O ₅ K ₂ O MnO TiO ₂ Fe ₂ O ₃ ZrO ₂	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition	Element Al2O3 SiO2 P2O5 K2O MnO TiO2 Fe2O3 ZrO2 LOI	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition	Element Al2O3 SiO2 P_2O_5 K_2O MnO TiO2 Fe2O3 ZrO2 LOI	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition Pre Name	Element Al2O3 SiO ₂ P ₂ O ₅ K ₂ O MnO TiO ₂ Fe ₂ O ₃ ZrO ₂ LOI ecious metals on conce Element	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition Pre Name Gold	Element Al2O3 SiO2 P2O5 K2O MnO TiO2 Fe2O3 ZrO2 LOI ecious metals on concee Element Au	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition Pre Name Gold Silver	Element Al2O3 SiO ₂ P ₂ O ₅ K ₂ O MnO TiO ₂ Fe ₂ O ₃ ZrO ₂ LOI ecious metals on conces Element Au Ag	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04	
	Name Aluminum Silicon Phosphorus Potassium Manganese Titanium Iron Zirconium Loss of Ignition Pre Name Gold Silver Palladium	Element Al2O3 SiO2 P2O5 K2O MnO TiO2 Fe2O3 ZrO2 LOI scious metals on conces Element Au Ag Pd	Composition (%) 17,64 61,28 0,09 0,07 0,03 0,63 14,95 0,26 5,04 ntrate 13 <1	

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	500357776 CANECA 1 LAV	ADO // "26138"	Consecutive of Sample:	AUX 26260
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
Cliente			Date Received:	06/10/2021
Contact	TIEFANY CIELENTES		Date of Analysis:	07/10/2021
Address:	201 RUE NOTRE DAME OUE	ST	bate of heport.	0771072021
City:	MONTREAL		Solicitud Análisis:	SA7767
Phone Number:	1 4384999621		Consecutive of Report:	26260-RE XRF
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	I PASTILLA	Application:	1,11 AQ 2020 LT
->> version >	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	Pagina Loe I
	5100	5100	63,0	
	Concentra	ation ratio	81	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Aluminum	AI203	4,22	
	Silicon	SiO ₂	76,89	
	Phosphorus	P ₂ O ₅	0,14	
	Potassium	K ₂ O	0,07	
	Titanium	TiO ₂	0,23	
	Iron	Fe ₂ O ₃	15,14	
	Zirconium	Zr0 ₂	0,13	
	Loss of Ignition	LOI	3,14	
	Pre	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	13	
	dold			
	Silver	Ag	<1	
	Silver Palladium	Ag Pd	<1	

WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT

Identification	500357778 CANEC	A 1 LAVADO // 1266	ecutive of Sample:	AUX 26257
Sample Type:	DESCONOCIDO	Respo	nsible for Sampling	CLIENT
Origin:	DESCONOCIDO	Sampli	ng Plan/Procedure:	NONE
		그 한 것은 것이 하는 것	Date Received:	10/6/2021
Client:	AUXICO RESOURC	ES	Date of Analysis:	10/7/2021
Contact:	TIFFANY CIFUENT	ES	Date of Report:	10/7/2021
Address:	201 RUE NOTRE D	AME OUEST		이 같아요? 이 같이 같아?
City:	MONTREAL		Solicitud Análisis:	SA7767
Phone Number:	1 4384999621	Con	secutive of Report: 2	6257-RE XRF
Method of Analysis:	PRT-GT-01 WDXR	F-OMNIAN PASTILL	A Application: 1	1 AQ 2020 LT
FT-GT-3! Versión 3				Página 1 de 1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying(g)	
	6730	6730	12.9	
	Concentr	ation ratio	522	
i		OBSERVATIONS		
	Name	Element	Composition (%)	
	Aluminum	Al ₂ O ₃	16.77	
	Silicon	SiO ₂	53.86	
	Phosphorus	P ₂ O ₅	0.10	

Phosphorus	P ₂ O ₅	0.10
Potassium	K ₂ O	0.07
Titanium	TiO ₂	0.30
Iron	Fe ₂ O ₃	22.15
Zirconium	ZrO ₂	0.12
Loss of Ignition	LOI	6.59
Precio	us metals on conc	entrate
Name	Element	Composition (ppm)
Gold	Au	46
Silver	Ag	<1
Palladium	Pd	<1

31

Pt

*Estimated LLD forWDXRF-OMNIAN PASTILLA on concentrate material is 100 ppm

Platinum

M FT-GT-35

Sample Type: Origin:	DESCONOCIDO		sealing of sample.
Origin	DECOUNTOONDO	Hoenor	wihle for Sampling
Client	DESCONOCIDO	Samoli	a Plan/Procedura
Client		and the second part of the secon	Date Received:
Client	AUXICO RESOURCE	ES	Date of Analysis:
Contact	TIFFANY CIFUENTE	S	Date of Report:
Address	201 RUE NOTRE DA	ME OUEST	집 아파 이상은 것이 없다.
City	MONTREAL	요즘 성장 있는 것 #	Solicitud Análisis:
none Number	1 4384999621	Con	secutive of Report:
Versión 3	PRI-GI-01 WDXRF-	OMNIAN PASTILLA	Application:
eraidri d		and senated as the	
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying(g)
	6650	6650	57 2
	Concentra	tion ratio	116
		OBSERVATIONS	
	Name	Element	Composition (%)
	Aluminum	Al ₂ O ₃	5.30
	Silicon	SiO ₂	73.16
	Phosphorus	P ₂ O ₅	0.17
	Potassium	K ₂ O	0.19
	Titanium	TiO ₂	0.28
	Iron	Fe ₂ O ₃	17.44
	Zirconium	ZrO ₂	0.01
	Loss of Ignition	LOI	3.37
	Precio	us metals on conc	entrate
	Name	Element	Composition (ppm
	Gold	Au	19
	Silver	Ag	<1
	D. II. II	Dd	4
	Palladium	Pa	

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification Sample Type: Origin:	500357783 CANECA 2 LAV DESCONOCIDO DESCONOCIDO	/ADO // "26130"	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date Received:	AUX 26254 CLIENT NONE 06/10/2021
Client: Contact: Address:	AUXICO RESOURCES TIFFANY CIFUENTES 201 BUE NOTRE DAME OU	FST	Date of Analysis: Date of Report:	07/10/2021 07/10/2021
City: Phone Number: thod of Analysis:	MONTREAL 1 4384999621 PRT-GT-01 WDXRF-OMNIAN	N PASTILLA	Solicitud Análisis: Consecutive of Report: Application:	SA7767 26254-RE XRF 1,11 AQ 2020 LT
ersión 3	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	Pagina 1 de 1
	2440	2440	23,0	
	Concentr	ation ratio	106	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Sodium	Na ₂ O	0,19	
	Magnesium	MgO	0,04	
	Aluminum	AI203	20,96	
	Silicon	SiO ₂	64,12	
	Phosphorus	P ₂ O ₅	0,12	
	Potassium	K₂O	7,69	
	Calcium	CaO	0,26	
	Manganese	MnO	0,08	
	Titanium	TiO ₂	0,28	
	Iron	Fe ₂ O ₃	2,82	
	Zirconium	Zr0 ₂	0,05	
	Cerium	CeO ₂	0,15	
	Loss of Ignition	LOI	3,24	
	Pr	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	

 Silver
 Ag
 <1</th>

 Palladium
 Pd
 <1</td>

 Platinum
 Pt
 <1</td>

 uted LID for#IDDRF-ORMAN FRSTILLA on concentrate material is 100 ppm
 <1</td>

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	500357784 CANECA 2 LAV	ADO // "26124"	Consecutive of Sample:	AUX 26
Sample Type:	DESCONOCIDO		Responsible for Sampling	CL
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	N OC 110/2
Client	AUXICO RESOURCES		Date Received:	29/11/2
Contact:	TIFFANY CIFUENTES		Date of Report:	29/11/2
Address:	201 RUE NOTRE DAME OUR	EST		
City:	MONTREAL		Solicitud Análisis:	SA7
Phone Number:	1 4384999621		Consecutive of Report:	20249-KE
-GT-35 Versión 3	PRI-GI-UT WDXKF-UMNIAN	IPASTILLA	Application:	I, II AQ 202 Página
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	J
	895	895	63,5	
	Concentra	ation ratio	14	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Sodium	Na ₂ O	0,01	
	Aluminum	Al ₂ O ₃	8,91	
	Silicon	SiO ₂	87,48	
	Phosphorus	P ₂ O ₅	0,02	
	Potassium	K₂0	0,05	
	Calcium	CaO	0,05	
	Titanium	TiO ₂	0,66	
	Manganese	MnO	0,03	
	Iron	Fe ₂ O ₃	2,47	
	Zirconium	ZrO ₂	0,28	
	Copper	CuO	0,02	
	Pre	ecious metals on conce	intrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	

WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT

Identification	500357785 CANECA 2 LAV	/ADO // "26127"	Consecutive of Sample:	AUX 26252
Sample Type:			Responsible for Sampling	
Origin:	DESCONOCIDO		Sampling Plan/Procedure	NONE
origin.	DESCONOCIDO		Date Received:	06/10/2021
Client:	AUXICO RESOURCES		Date of Analysis:	29/11/2021
Contact:	TIFFANY CIFUENTES		Date of Report:	29/11/2021
Address:	201 RUE NOTRE DAME OUI	EST	C. D. D. J. A. (D. 1	
City: Phone Number	MUNTKEAL 1 4384000621		Solicitud Análisis:	SA/767 26252_DE VDE
hod of Analysis	PRT_GT_01 WDXRE_OMNIAN	I PASTILLA	Application:	1 11 A0 2020 LT
rsión 3			пррисацон.	Página 1 de 1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	
	1990	1990	17,5	
	Concentr	ation ratio	114	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Aluminum	Al ₂ O ₃	3,92	
	Silicon	SiO ₂	91,66	
	Phosphorus	P ₂ O ₅	0,05	
	Chromium	Cr ₂ O ₃	0,02	
	Titanium	TiO ₂	0,44	
	Iron	Fe ₂ O ₃	3,70	
	Zirconium	ZrO ₂	0,12	
	Pro	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	2	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	

*Estimated LLD forWDXRF-OMNIAN PASTILLA on concentrate material is 100 ppm

ET GT 35

WA	VELENGTH DISPER	SIVE X-RAY FLUC	RESCENCE REPORT	
Identification	500357786 CANECA 2 LAV	ADO // "26126"	Consecutive of Sample:	AUX 2625
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIEN
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NON
e 11			Date Received:	06/10/202
Client:	AUXICO RESOURCES		Date of Analysis:	29/11/202
Address:	201 RUE NOTRE DAME OUE	ST	Date of Report.	29/11/202
City:	MONTREAL		Solicitud Análisis:	SA776
Phone Number:	1 4384999621		Consecutive of Report:	26251-RE XR
Method of Analysis:	PRT-GT-01 WDXRF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020 L
T-GT-35 Versión 3				Página 1 de
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	
	830	830	65,0	
	Concentra	ation ratio	13	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Aluminum	Al ₂ O ₃	9,25	
	Silicon	SiO ₂	83,00	
	Phosphorus	P ₂ O ₅	0,12	
	Potassium	K ₂ O	0,09	
	Titanium	TiO ₂	0,50	
	Iron	Fe ₂ O ₃	6,90	
	Zirconium	ZrO ₂	0,13	
	Pre	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	
		Arr	<1	
	Silver	Ag		
	Silver Palladium	Pd	<1	

Identification 500357787 CANECA 2 LAVADO // "26125" Cor Sample Type: DESCONOCIDO Response Origin: DESCONOCIDO Sample	cutive of Sample: AUX 26250
Sample Type: DESCONOCIDO Respo Origin: DESCONOCIDO Sampl	•
Origin: DESCONOCIDO Sampl	ible for Sampling CLIENT
	Plan/Procedure: NONE
	Date Received: 06/10/2021
Client: AUXICO RESOURCES	Date of Analysis: 0//10/2021
Address: 201 RUE NOTRE DAME QUEST	Date of Report. 07/10/2021
City: MONTREAL	olicitud Análisis: SA7767
Phone Number: 1 4384999621 Co	cutive of Report: 26250-RE XRF
ethod of Analysis: PRT-GT-01 WDXRF-OMNIAN PASTILLA	Application: 1,11 AQ 2020 LT
Versión 3	Página 1 de 1
Weight before	Veight after
Initial weight (g) concentration (g)	centration and
	drying (g)
1380 1380	13,9
Concentration ratio	99
OBSERVATIONS	
Name Element (position (%)
Sodium Na ₂ O	0.09
Magnesium MgQ	0.04
Aluminum Al2O3	21.56
Silicon SiO ₂	64.29
Phosphorus P ₂ O ₅	0.19
Potassium K ₂ O	0.56
Calcium CaO	0.26
Manganese MnO	0.05
Titanium TiO ₂	0.65
Iron Fe ₂ O ₂	6.67
Zirconium ZrO ₂	0.14
Loss of Ignition LOI	5,49
Precious metals on concentrate	
Name Element Co	position (ppm)
Gold Au	63
Silver Ag	<1
Palladium Pd	<1
Platinum Pt	15

WA	VELENGIH DISPER	SIVE A-KAT FLUG	KESCENCE KEPUKI	
Identification	50035788 CANECA 2 LAVA	DO // "26128"	Consecutive of Sample:	AUX
Sample Type:	DESCONOCIDO		Responsible for Sampling	
Origin:	DESCONOCIDO		Date Received	06/1
Client [.]	AUXICO RESOURCES		Date of Analysis	07/
Contact:	TIFFANY CIFUENTES		Date of Report:	07/1
Address:	201 RUE NOTRE DAME OUR	EST		
City:	MONTREAL		Solicitud Análisis:	26252
Method of Analysis:	PDT CT O1 WDYDE OMNIAN		Consecutive of Report:	20233-
35 Versión 3		I FASTILLA	Application.	<u>, п л ц</u> Р
			Weight after	
	Initial weight (g)	Weight before	concentration and	
	• (0)	concentration (g)	drying (g)	
	1980	1980	23,0	
	Concentr	ation ratio	86	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Magnesium	MgO	0,02	
	Aluminum	AI203	16,92	
	Silicon	SiO ₂	53,49	
	Phosphorus	P ₂ O ₅	0,08	
	Potassium	K ₂ O	0,15	
	Titanium	TiO ₂	0,64	
	Iron	Fe ₂ O ₃	22,72	
	Zirconium	ZrO ₂	0,10	
	Loss of Ignition	LOI	5,88	
	Pro	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	

WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT

Identification	500357789 CANEC	A 1 LAVADO // 1264	secutive of Sample:	AUX 26256
Sample Type:	DESCONOCIDO	Respo	nsible for Sampling	CLIENT
Origin:	DESCONOCIDO	Sampli	ng Plan/Procedure:	NONE
	Carl State 1		Date Received:	10/6/2021
Client:	AUXICO RESOURC	ES	Date of Analysis:	10/7/2021
Contact:	TIFFANY CIFUENTE	ES	Date of Report:	10/7/2021
Address:	201 RUE NOTRE DA	AMEOUESI	Colisitud Apólisis	SA7767
Phone Number	1 4384000621	Con	Soliciuu Analisis:	26256-RE XRE
Method of Analysis:	PRT_GT_01 WDYRF	OMNIAN PASTILLA	Application:	11 AO 2020 I T
FT-GT-3! Versión 3			Application	Página 1 de 1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying(g)	
	2505	2505	18.7	
	Concentra	ation ratio	134	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Sodium	Na2O	0.06	
	Magnesium	MgO	0.04	
	Aluminum	AI2O3	9.03	
	Silicon	SiO ₂	77.00	
	Phosphorus	P ₂ O ₅	0.06	
	Potassium	K ₂ O	0.95	
	Calcium	CaO	0.09	
	Titanium	TiO ₂	0.34	
	Iron	Fe ₂ O ₃	9.85	
	Zirconium	ZrO ₂	0.02	
	Loss of Ignition	LOI	2.50	
	Loos of Ightaon			
	Precio	us metals on conce	entrate	
	Name	Element	Composition (ppm)	
	Gold	Au	11	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum *Estimated LLD forWDXRF-OMN	Pt IAN PASTILLA on concentrate	<1 naterial is 100 ppm	

FT-GT-35

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	500357790 CANECA 2 LAV	'ADO // "26122"	Consecutive of Sample:	AUX 26247
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
Client	AUXICO RESOURCES		Date Received: Date of Analysis:	06/10/2021
Contact:	TIFFANY CIFUENTES		Date of Report:	07/10/2021
Address:	201 RUE NOTRE DAME OUE	EST		
City:	MONTREAL		Solicitud Análisis:	SA7767
Phone Number:	1 4384999621	DACTULA	Consecutive of Report:	26247-RE XRF
Method of Analysis:	PKI-GI-UT WDXKF-OMNIAN	IPASTILLA	Application:	1,11 AQ 2020 L1
			Weight after	r agina r de r
	Initial weight (g)	Weight before	concentration and	
		concentration (g)	drying (g)	
	3585	3585	32,0	
	Concentra	ation ratio	112	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Sodium	Na ₂ O	0,02	
	Aluminum	AI203	7,64	
	Silicon	SiO ₂	69,02	
	Phosphorus	P ₂ O ₅	0,09	
	Potassium	K ₂ O	0,45	
	Chromium	Cr ₂ O ₃	0,02	
	Titanium	TiO ₂	0,40	
	Iron	Fe ₂ 0 ₃	18,80	
	Zirconium	Zr0 ₂	0,04	
	Loss of Ignition	LOI	3,52	
	Pre	ecious metals on conce	ntrate	
	Name	Element	Composition (ppm)	
	Gold	Au	<1	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	

*Estimated LLD forWDXRF-OMNIAN PASTILLA on concentrate material is 100 pp

WAVELENGTH DISPERSIVE X-RAY FLUORESCENCE REPORT

Identification	500357791 CANECA 2 LAV	ADO // "26121"	Consecutive of Sample:	AUX 26246
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
Client			Date Received:	06/10/2021
Contact:	TIFFANY CIFLIENTES		Date of Report:	07/10/2021
Address:	201 RUE NOTRE DAME OUE	ST		
City:	MONTREAL		Solicitud Análisis:	SA7767
Phone Number:	1 4384999621	DACTULA	Consecutive of Report:	26246-RE XRF
Method of Analysis:	PKI-GI-OT WDXKF-OMNIAN	PASTILLA	Application:	1,11 AQ 2020 L1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying(g)	r agina r oc r
	1105	1105	20,0	
	Concentra	ation ratio	55	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Sodium	Na		
	Magnesium	MaQ	0.04	
	Aluminum	AI203	8,82	
	Silicon	SiO ₂	61.09	
	Phosphorus	P ₂ O ₅	0,22	
	Potassium	K ₂ 0	0,30	
	Calcium	CaO	0,04	
	Chromium	Cr_2O_3	0,02	
	Titanium	TiO ₂	0,36	
	Iron	Fe ₂ O ₃	24,45	
	Zirconium	ZrO ₂	0,05	
	Loss of Ignition	LOI	4,55	
	Pre	cious metals on concer	trate	
	Name	Element	Composition (ppm)	
	Gold	Au	15	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinum	Pt	<1	

WA	VELENGTH DISPER	SIVE X-RAY FLUO	RESCENCE REPORT	
Identification	500357792 CANECA 2 LAV	ADO	Consecutive of Sample:	AUX 26233
Sample Type:	DESCONOCIDO		Responsible for Sampling	CLIENT
Origin:	DESCONOCIDO		Sampling Plan/Procedure:	NONE
Client			Date Received:	06/10/2021
Contact:	TIFFANY CIFUENTES		Date of Report:	06/10/2021
Address:	201 RUE NOTRE DAME OUE	ST		
City:	MONTREAL		Solicitud Análisis:	SA7764
Phone Number:	1 4384999621	DACTULA	Consecutive of Report:	26233-RE XRF
Method of Analysis: ET-GT-35 Versión 3	PRI-GI-01 WDXKF-OMNIAN	IPASTILLA	Application:	1,11 AQ 2020 LT Página 1 de 1
	Initial weight (g)	Weight before concentration (g)	Weight after concentration and drying (g)	r ugine r oc r
	1250	1250	17,0	
	Concentra	ation ratio	74	
		OBSERVATIONS		
	Name	Element	Composition (%)	
	Magnesium	MgO	0,06	
	Aluminum	Al ₂ O ₃	15,62	
	Silicon	SiO ₂	34,75	
	Phosphorus	P ₂ O ₅	0,17	
	Potassium	K ₂ O	0,82	
	Calcium	CaO	0,04	
	Vanadium	V ₂ O ₅	0,12	
	Titanium	TiO ₂	0,71	
	Iron	Fe ₂ O ₃	40,18	
	Zirconium	Zr0 ₂	0,06	
	Lead	РЬО	0,02	
	Loss of Ignition	LOI	7,43	
	Р	recious metals concetr	rated	
	Name	Element	Composition (ppm)	
	Gold	Au	13	
	Silver	Ag	<1	
	Palladium	Pd	<1	
	Platinium	Pt	<1	
	*Estimated LLD forWDXRF-OMNIAN PASTILL	A on concentrate material is 100 ppm		

D0357793 CANECA 2 LAV. ESCONOCIDO ESCONOCIDO JXICO RESOURCES FRANY CIPUENTES D1 RUE NOTRE DAME OUE ONTREAL 4384999621 RT-GT-01 WDXRF-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum	ADO // "26123" EST IPASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Consecutive of Sample: Responsible for Sampling Sampling Plan/Procedure: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	AUX 26248 CLIENT NONE 06/10/2021 29/11/2021 29/11/2021 SA7767 26248-RE XRF 1,11 AQ 2020 LT
ESCONOCIDO ESCONOCIDO JXICO RESOURCES FFANY CIPUENTES D1 RUE NOTRE DAME OUE ONTREAL 4384399621 RT-GT-01 WDXRE-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum	EST PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS Element	Responsible for Sampling Sampling Plan/Procedure: Date Received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	CLIENT NONE 06/10/2021 29/11/2021 29/11/2021 38/767 26248-8E XR 1,11 AQ 2020 LT
ESCONOCIDO XIXCO RESOURCES FFANY CIFUENTES 5) TRUE NOTHE DAME OUE ONTIFEAL 4384999621 RT-GT-01 WDXRF-OMNIAN Initial weight (g) 2315 Concentra Concentra Name Aluminum	PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Sampling Plan/Procedure: Date of Analysis: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	NON 06/10/2021 29/11/2021 29/11/2021 SA7767 26248-RE XRF 1,11 AQ 2020 LT
JXICO RESOURCES FFANY (DIVENTES D1 RUE NOTRE DAME OUE ONTREAL 4384999621 RT-GT-01 WDXRF-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum	EST PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS Element	Date received: Date of Analysis: Date of Report: Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	0010/2021 29111/2021 29111/2021 SA7767 26248-RE XRF 1,11 AQ 2020 LT
FFANY GRUENTES 17 RUE NOTRE DAME OUE ONTREAL 4384999621 43849997 43849997 43849997 43849997 43849997 43849997 43849997 438497 438497 438497 4384997 438497	ST IPASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Date of Report: Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	29/11/2021 SA7767 26248-RE XRF 1,11 AQ 2020 LT
01 RUE NOTRE DAME OUE ONTREAL 4384399621 RT-GT-01 WDXRF-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum	PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Solicitud Análisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	SA7767 26248-RE XRF 1,11 AQ 2020 LT
ONTREAL 4384999621 RT-GT-01 WDXRF-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum_	PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Solicitud AnAllisis: Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	SA7767 26248-RE XRF 1,11 AQ 2020 LT
4384999621 RT-GT-01 WDXRE-OMNIAN Initial weight (g) 2315 Concentra Name Aluminum	PASTILLA Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Version Consecutive of Report: Application: Weight after concentration and drying (g) 74,0 31	26245-RE XRF 1,11 AQ 2020 LT
Initial weight (g) 2315 Concentra Name Aluminum	Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Application: Weight after concentration and drying (g) 74,0 31	1,11 AQ 2020 EI
Initial weight (g) 2315 Concentra Name Aluminum	Weight before concentration (g) 2315 ation ratio OBSERVATIONS	Weight after concentration and drying(g) 74,0 31	
Initial weight (g) 2315 Concentra Name Aluminum	Weight before concentration (g) 2315 ation ratio OBSERVATIONS	concentration and drying (g) 74,0 31	
2315 Concentra Name Aluminum	2315 ation ratio OBSERVATIONS	drying (g) 74,0 31	
2315 Concentra Name Aluminum	2315 ation ratio OBSERVATIONS	74,0 31	
Concentra Name Aluminum	observations	31	
Name Aluminum	OBSERVATIONS		
Name Aluminum	OBSERVATIONS		
Name Aluminum	Element		
Aluminum	Element	Composition (%)	
	Al ₂ O ₃	0,85	
Silicon	SiO ₂	2,39	
Phosphorus	P ₂ O ₅	15,12	
Calcium	CaO	0,27	
Iron	Fe ₂ O ₃	3,38	
Zirconium	ZrO ₂	0,78	
Niobium	Nb ₂ O ₅	0,73	
Tantalum	Ta ₂ O ₅	0,72	
Lead	PbO	0,58	
Hafnium	HfO ₂	0,18	
Thorium	ThO ₂	7,97	
Uranium	U	0,23	
Tin	SnO ₂	0,19	
REE			
Name	Element	Composition (%)	
Cerium	CeO2	43,86	
Neodymium	Nd ₂ O ₃	8,24	
Lanthanum	La ₂ O ₃	7,95	
Praseodymium	Pr ₂ O ₃	2,33	
Samarium	Sm ₂ O ₃	2,12	
Gadolinium	Gd ₂ O ₃	0,91	
Dysprosium	Dy ₂ O ₃	0,65	
Yttrium	Y ₂ O ₃	0.05	
Ytterbium	Yb ₂ O ₃	0.44	
Erbium	Er ₂ 0 ₃	0.01	
Total Rare Earth	REE	66,6	
	Pritosprioras Calcium Iron Zirconium Niobium Tantalum Lead Hafnium Uranium Uranium Uranium Cerium Neodymium Lanthanum Praseodymium Samarium Gadolinium Dysprosium Yttrium Yttrium Total Rare Earth	Name Element Carium CaO Iron Fe ₂ O ₃ Zirconium ZrO ₂ Niobium Nb ₂ O ₅ Tantalum Ta ₂ O ₅ Lead PbO Hafnium HO ₂ Thorium ThO ₂ Uranium U Tin SnO ₂ REE Name REE Name Leanthanum La ₂ O ₃ Praseodymium Nd ₂ O ₃ Samarium SmO ₃ Gadolinium Gd ₂ O ₃ Dysprosium Dy ₂ O ₃ Yttrium Y ₂ O ₃ Erbium Er ₂ O ₃ Total Rare Earth REE	Priospilorus 1.203 1.2,12 Calcium CaO 0,27 Iron Fe ₂ O ₃ 3,38 Zirconium ZrO ₂ 0,78 Niobium Nb ₂ O ₅ 0,73 Tantalum Ta ₄ O ₅ 0,72 Lead PbO 0,58 Hafnium HfO ₂ 0,18 Thorium ThO ₂ 7,97 Uranium U 0,23 Tin SnO ₂ 0,19 REE Name Element Composition (%) Cerium CeO ₂ 43,86 Neodymium Nd ₂ O ₃ 8,24 Lanthanum La ₂ O ₃ 7,95 Praseodymium Sm ₂ O ₃ 2,12 Gadolinium Gd ₂ O ₃ 0,91 Dysprosium Dy ₂ O ₃ 0,65 Ytterbium Y ₂ O ₃ 0,05 Ytterbium Er ₂ O ₃ 0,01 Total Rare Earth REE 66,6

Precious metals on concentrate			
Name	Element	Composition (ppm)	
Gold	Au	9	
Silver	Ag	<1	
Palladium	Pd	<1	
Platinum	Pt	<1	
stimated LLD forWDXRF-OMNIAN PASTILLA on concentrate material is 100 ppm			